Draw the trajectory (as if we are in a helicopter or satellite):
i. If the car moves at a constant speed, the average speed is the total distance over total time: the distance is
"v(5+4+3)=12v,"
the time is
"t=12 \\text{ s}."
ii. Find the magnitudes:
"\\vec{r}_{ABj}=AB_y=vt_{AB}\\text{ sin}30^\\circ=2.5v\\textbf{j},\\\\\n\\vec{r}_{BCj}=BC_y=0,\\\\\n\\vec{r}_{CDj}=CD_y=vt_{CD}\\text{ sin}50^\\circ=2.3v\\textbf{j}.\\\\\n\\vec{r}_{ADj}=AD_y=AB_y+BC_y+CD_y=4.8v\\textbf{j}.\\\\\n\\space\\\\\n\\vec{r}_{ABi}=AB_x=vt_{AB}\\text{ cos}30^\\circ=4.3v\\textbf{i},\\\\\n\\vec{r}_{BCi}=BC_x=vt_{bc}=4v\\textbf{i},\\\\\n\\vec{r}_{CDi}=CD_x=vt_{CD}\\text{ cos}50^\\circ=1.9v\\textbf{i}.\\\\\n\\vec{r}_{ADi}=AD_x=AB_x+BC_x+CD_x=10.3v\\textbf{i}.\\\\\n\\space\\\\\n|\\vec{r}|=AD=\\sqrt{AD_x^2+AD_y^2}=11.4v."
Therefore:
"\\vec{r}=\\vec{r}_{AB}+\\vec{r}_{BC}+\\vec{r}_{CD}=10.3v\\textbf{i}+4.8v\\textbf{j}."iii, iv. Calculate the angle:
The magnitude is v. Therefore:
Comments
Leave a comment