Question #102740
A wheel 2.0 m in diameter lies in the vertical plane and rotates about its central axis
with a constant angular acceleration of 4.0rads .
2
The wheel starts from rest at
t  0 and the radius vector of a point A on the wheel makes an angle of 60º with the
horizontal at this instant. Calculate the angular speed of the wheel, the angular
position of the point A and the total acceleration at t  2.0s.
1
Expert's answer
2020-02-12T10:00:48-0500

1) The angular speed of the wheel


ω=ω0+ϵt=0+ϵt=ϵt=42=8rad/s\omega=\omega_0+\epsilon t=0+\epsilon t=\epsilon t=4\cdot 2=8 rad/s


2) The angular position of the point A


ϕ=ϕ0+ω0+ϵt22=π3+0+4222=1.047+8=9.047rad\phi=\phi_0+\omega_0+\frac{\epsilon t^2}{2}=\frac{\pi}{3}+0+\frac{4\cdot 2^2}{2}=1.047+8=9.047 rad


or


ϕ=518.4°\phi=518.4°



518.4°360°=158.4°518.4°-360°=158.4°with the horizontal


3) The total acceleration


a=an2+aτ2=(v2R)2+ϵ2R2=(ω2R2R)2+ϵ2R2=(ω2R)2+ϵ2R2==(821)2+4212=64.1m/s2a=\sqrt{a^2_n+a^2_\tau}=\sqrt{(\frac{v^2}{R})^2+\epsilon^2R^2}=\sqrt{(\frac{\omega^2\cdot R^2}{R})^2+\epsilon^2R^2}=\sqrt{(\omega^2\cdot R)^2+\epsilon^2R^2}==\sqrt{(8^2\cdot 1)^2+4^2\cdot 1^2}=64.1m/s^2










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS