"\\alpha =45^{\\circ},\\; v_0=22m\/s, \\; l_0=40m,\\; h_0=7m"
Answers:
a)"h=12.347m"
b)"l=49.387m"
c)"H=7.603m"
d)The arrow will drop inside the castle walls
Explanation:
"x=v_{0x}t, \\; v_{0x}=v_0 \\cos \\alpha"
"y=v_{0y}t-\\frac{gt^2}{2}, \\; v_{0y}=v_0 \\sin \\alpha"
"v_x=v_{0x}, \\; v_y=v_{0y}-gt"
a) Let "t_1" be time point, when the arrow reaches the maximum height.
At this point "v_y=0, \\quad v_0 \\sin \\alpha -gt_1=0, \\quad t_1=\\frac{v_0 \\sin \\alpha}{g}"
"h=v_{0y}t-\\frac{gt^2}{2}=v_0 \\sin \\alpha \\frac{v_0 sin \\alpha}{g} -\\frac{g}{2}(\\frac{v_0 \\sin \\alpha}{g})^2=\\frac{v_0^2{\\sin ^2\\alpha}}{2g}"
"h= \\frac{v_0^2{\\sin ^2\\alpha}}{2g}= \\frac{22^2 * \\frac{1}{2} }{2*9.8} \\approx 12.347m"
b) Let "t_2" be time point, when the arrow reaches the maximum range.
"l=v_{0x} t_2=v_0 \\cos \\alpha \\; 2t_1=v_0 \\cos \\alpha \\; \\frac{2v_0\\sin\\alpha}{g}=\\frac{v_0^2 \\sin 2\\alpha}{g}"
"l =\\frac{v_0^2 \\sin 2\\alpha}{g}=\\frac{22^2 *1}{9.8} \\approx49.387m"
c) Let "t_3" be time point, when the arrow reaches the wall.
"l_0=v_{0x}t_3"
"H=v_{0y}t_3-\\frac{gt_3^2}{2}= v_0 \\sin \\alpha \\frac{l_0}{v_0 \\cos \\alpha} -\\frac{gl_0^2}{2v_0^2 \\cos ^2 \\alpha}= l_0 \\tan \\alpha-\\frac{gl_0^2}{2v_0^2 \\cos ^2 \\alpha}=40*1-\\frac{9.8*40^2}{2*22^2 1\/2}=7.603m"
d) "H>h_0 \\;\\Rightarrow" the arrow will be under the wall
Comments
Dear visitor, please use panel for submitting new questions
A 2kg mass is suspended by a 0.25mm diameter copper wire with Young modulus 117GPa. Calculate the extension that will occur if another 1kg mass is added to the 4.87m long wire
Leave a comment