Given that,
⇒ 191 × 2 = 3.97 t × t + 33.4 t \Rightarrow 191×2=3.97t×t+33.4t ⇒ 191 × 2 = 3.97 t × t + 33.4 t
⇒ 382 = 3.97 t 2 + 33.4 t \Rightarrow 382=3.97t^2+33.4t ⇒ 382 = 3.97 t 2 + 33.4 t
⇒ 3.97 t 2 + 33.4 t − 382 = 0 \Rightarrow 3.97t^2+33.4t-382=0 ⇒ 3.97 t 2 + 33.4 t − 382 = 0
it is the quadratic equation, so it will have 2 roots.
Now, from the quadratic equation formula,
⇒ t = − b ± b 2 − 4 a c 2 a \Rightarrow t=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} ⇒ t = 2 a − b ± b 2 − 4 a c
⇒ t = − 33.4 ± ( 33.4 ) 2 + 4 × 3.97 × 382 2 × 3.97 \Rightarrow t=\dfrac{-33.4\pm\sqrt{(33.4)^2+4\times 3.97\times382}}{2\times 3.97} ⇒ t = 2 × 3.97 − 33.4 ± ( 33.4 ) 2 + 4 × 3.97 × 382
⇒ t = − 33.4 ± 1115.56 + 6066.16 7.94 \Rightarrow t=\dfrac{-33.4\pm\sqrt{1115.56+6066.16}}{7.94} ⇒ t = 7.94 − 33.4 ± 1115.56 + 6066.16
⇒ t = − 33.4 ± 7181.72 7.94 \Rightarrow t=\dfrac{-33.4\pm \sqrt{7181.72}}{7.94} ⇒ t = 7.94 − 33.4 ± 7181.72
⇒ t = − 33.4 ± 84.74 7.94 \Rightarrow t=\dfrac{-33.4\pm84.74}{7.94} ⇒ t = 7.94 − 33.4 ± 84.74
Taking "+",
⇒ t = − 33.4 + 84.74 7.94 = 6.46 \Rightarrow t=\dfrac{-33.4+84.74}{7.94}=6.46 ⇒ t = 7.94 − 33.4 + 84.74 = 6.46
so,
t = 6.5 t=6.5 t = 6.5
Taking "-"
t = − 118.14 7.94 = − 14.88 t=\dfrac{-118.14}{7.94}=-14.88 t = 7.94 − 118.14 = − 14.88
Comments