A particle moves along an arc of a circle of radius R according to the law l = a sin ωt, where l is the displacement from the initial position measured along the arc, and a and ω are constants. Assuming R = 1.00 m, a = 0.80 m, and ω = 2.00 rad/s, find: (a) the magnitude of the total acceleration of the particle at the points l = 0 and l = ±a; (b) the minimum value of the total acceleration wmin and the corresponding displacement lm.