Solution
Acceleration can be written as
ωn=a2ω2sinωtR\omega_n=\frac{a^2 \omega^2 \sin\omega t}{R}ωn=Ra2ω2sinωt
Case first when l=0l=0l=0 then
ω=0,π\omega=0, \piω=0,π
Magnitude of acceleration
ωn=a2ω2R=(0.80)2×221=2.56radsec2\omega_n=\frac{a^2 \omega^2 }{R}=\frac{(0.80)^2 \times2^2 }{1}=2.56 \frac{rad}{sec^2}ωn=Ra2ω2=1(0.80)2×22=2.56sec2rad
In case of l=−al=-al=−a or +a+a+a then
ω=0\omega =0ω=0
ωn=aω2=(0.80)×22\omega_n=a \omega^2 =(0.80)\times2^2ωn=aω2=(0.80)×22
ωn=3.20radsec2\omega_n=3.20\frac{rad}{sec^2}ωn=3.20sec2rad
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment