Given values, expressed in the basic SI units:
We will also need the vacuum permittivity (a.k.a. electric constant) for finding the relative permittivity (a.k.a. dielectric constant):
"\\epsilon_0 \\approx 8.854*10^{-12}~\\text{m}^{-3}\\text{kg}^{-1}\\text{s}^{4}\\text{A}^{2}."
Paying attention to the dimentions (units), the relative permittivity will be expressed simply as:
"\\epsilon = \\frac{1}{\\epsilon_0}\\alpha C = \\frac{1.0*10^{-40}~\\text{kg}^{-1}\\text{s}^{4}\\text{A}^2~*~5.0*10^{25}~\\text{m}^{-3}}{8.854*10^{-12}~\\text{m}^{-3}\\text{kg}^{-1}\\text{s}^{4}\\text{A}^{2}} \\approx 5.647*10^{-4}."
For any confusion about the terminology of the discussed values of permittivity, see Wikipedia:
Comments
Leave a comment