An electron moves with an energy of 6.0×10^-16J across a magnetic field of 4.0×10^-3T perpendicularly. Calculate the velocity of electron, force on the electron,orbital radius of the electron and the period of motion.
Answer
velocity of electron is given by
v=2Em=2∗6∗10−169.1∗10−31=0.36∗107m/sv=\sqrt{\frac{2E}{m}}\\=\sqrt{\frac{2*6*10^{-16}}{9.1*10{-31}}}\\=0.36*10^7m/sv=m2E=9.1∗10−312∗6∗10−16=0.36∗107m/s
Force
F=qvB=1.6∗10−19∗0.36∗107∗4∗10−3=2.304∗10−15NF=qvB\\=1.6*10^{-19}*0.36*10^7*4*10^{-3}\\=2.304*10^{-15}NF=qvB=1.6∗10−19∗0.36∗107∗4∗10−3=2.304∗10−15N
Radius
R=mvqB=9.1∗10−31∗0.36∗1071.6∗10−19∗4∗10−3=0.51cmR=\frac{mv}{qB}\\=\frac{9.1*10^{-31}*0.36*10^7}{1.6*10^{-19}*4*10^{-3}}\\=0.51cmR=qBmv=1.6∗10−19∗4∗10−39.1∗10−31∗0.36∗107=0.51cm
Frequecy
ω=qBm=1.6∗10−19∗4∗10−39.1∗10−31=0.70∗10−8rad/sec\omega=\frac{qB}{m}\\=\frac{1.6*10^{-19}*4*10^{-3}}{9.1*10^{-31}}\\=0.70*10^{-8}rad/secω=mqB=9.1∗10−311.6∗10−19∗4∗10−3=0.70∗10−8rad/sec
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment