Calculate the Directional derivative of Scalar field f(x,y,z)= x²+yz+z² at p (1,2,1) along n normal unit vector = 1/3 ( 2 i certisian unit vector- j certisian unit vector+ 2k certisian unit vector)
"F=x^2+yz+z^2"
"\\nabla.F=\\hat{i}(2x)+\\hat{j}(z)+\\hat{k}(y+2z)"
"\\hat{a}=\\frac{1}{3}(\\hat{a}(2x)+\\hat{j}(z)+\\hat{k}(y+2z))"
"(\\nabla.F).\\hat{a}=\\frac{1}{3}(4x-z+2y+4z)"
Point P(1,2,1)
"(\\nabla.F).\\hat{a}=\\frac{11}{3}"
Comments
Leave a comment