Question #285337

Calculate the Directional derivative of Scalar field f(x,y,z)= x²+yz+z² at p (1,2,1) along n normal unit vector = 1/3 ( 2 i certisian unit vector- j certisian unit vector+ 2k certisian unit vector)

1
Expert's answer
2022-01-09T17:06:02-0500

F=x2+yz+z2F=x^2+yz+z^2


.F=i^d(x2+yz+z2)dx+j^d(x2+yz+z2)dx+k^d(x2+yz+z2)dz\nabla .F=\hat{i} {\frac{d(x^2+y z+z^2)}{dx}}+\hat{j} {\frac{d(x^2+y z+z^2)}{dx}}+\hat{k}\frac{d(x^2+y z+z^2)}{dz}

.F=i^(2x)+j^(z)+k^(y+2z)\nabla.F=\hat{i}(2x)+\hat{j}(z)+\hat{k}(y+2z)

a^=13(a^(2x)+j^(z)+k^(y+2z))\hat{a}=\frac{1}{3}(\hat{a}(2x)+\hat{j}(z)+\hat{k}(y+2z))


(.F).a^=i^(2x)+j^(z)+k^(y+2z).13(i^(2)+j^(1)+k^(2))(\nabla.F).\hat{a}=\hat{i}(2x)+\hat{j}(z)+\hat{k}(y+2z).\frac{1}{3}(\hat{i}(2)+\hat{j}(-1)+\hat{k}(2))

(.F).a^=13(4xz+2y+4z)(\nabla.F).\hat{a}=\frac{1}{3}(4x-z+2y+4z)

Point P(1,2,1)


(.F).a^(1,2,1)=13(4×11+2×2+4×1)(\nabla.F).\hat{a}|_{(1,2,1)}=\frac{1}{3}(4\times1-1+2\times2+4\times1)

(.F).a^=113(\nabla.F).\hat{a}=\frac{11}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS