Question #285330

calculate the directional derivative of scalar field f(x,y,z)=(x ²+yz+z²)at (1,2,1) along n^=1/3(2i-j+k^)

1
Expert's answer
2022-01-07T09:29:46-0500

The directional derivative in the direction of n=23i13j+13k\mathbf{n} = \dfrac23\mathbf{i}-\dfrac13\mathbf{j} + \dfrac13\mathbf{k} is given as follows:


nf=fnn\nabla_{\mathbf{n}}f = \nabla f\cdot \dfrac{\mathbf{n}}{|\mathbf{n}|}

where f\nabla f is the gradient of ff. Thus, obtain:


f=2xi+zj+(y+2z)kn=49+19+19=63nn=16(2ij+k)\nabla f = 2x\mathbf{i} + z\mathbf{j}+(y+2z)\mathbf{k}\\ |\mathbf{n}| = \sqrt{\dfrac49 + \dfrac19 + \dfrac19} = \dfrac{\sqrt{6}}{3}\\ \dfrac{\mathbf{n}}{|\mathbf{n}|} = \dfrac{1}{\sqrt{6}}(2\mathbf{i}-\mathbf{j} + \mathbf{k})

Finally,


nf=(2xi+zj+(y+2z)k)16(2ij+k)==16(4xz+y+2z)=16(4x+y+z)\nabla_{\mathbf{n}}f = (2x\mathbf{i} + z\mathbf{j}+(y+2z)\mathbf{k})\cdot \dfrac{1}{\sqrt{6}}(2\mathbf{i}-\mathbf{j} + \mathbf{k})=\\ =\dfrac{1}{\sqrt{6}}(4x-z+y+2z) = \dfrac{1}{\sqrt{6}}(4x+y+z)

Substituting point (1,2,1), obtain:


16(41+2+1)=76\dfrac{1}{\sqrt{6}}(4\cdot 1+2+1) = \dfrac{7}{\sqrt{6}}

Answer. 76\dfrac{7}{\sqrt{6}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS