The directional derivative in the direction of n = 2 3 i − 1 3 j + 1 3 k \mathbf{n} = \dfrac23\mathbf{i}-\dfrac13\mathbf{j} + \dfrac13\mathbf{k} n = 3 2 i − 3 1 j + 3 1 k is given as follows:
∇ n f = ∇ f ⋅ n ∣ n ∣ \nabla_{\mathbf{n}}f = \nabla f\cdot \dfrac{\mathbf{n}}{|\mathbf{n}|} ∇ n f = ∇ f ⋅ ∣ n ∣ n where ∇ f \nabla f ∇ f is the gradient of f f f . Thus, obtain:
∇ f = 2 x i + z j + ( y + 2 z ) k ∣ n ∣ = 4 9 + 1 9 + 1 9 = 6 3 n ∣ n ∣ = 1 6 ( 2 i − j + k ) \nabla f = 2x\mathbf{i} + z\mathbf{j}+(y+2z)\mathbf{k}\\
|\mathbf{n}| = \sqrt{\dfrac49 + \dfrac19 + \dfrac19} = \dfrac{\sqrt{6}}{3}\\
\dfrac{\mathbf{n}}{|\mathbf{n}|} = \dfrac{1}{\sqrt{6}}(2\mathbf{i}-\mathbf{j} + \mathbf{k}) ∇ f = 2 x i + z j + ( y + 2 z ) k ∣ n ∣ = 9 4 + 9 1 + 9 1 = 3 6 ∣ n ∣ n = 6 1 ( 2 i − j + k ) Finally,
∇ n f = ( 2 x i + z j + ( y + 2 z ) k ) ⋅ 1 6 ( 2 i − j + k ) = = 1 6 ( 4 x − z + y + 2 z ) = 1 6 ( 4 x + y + z ) \nabla_{\mathbf{n}}f = (2x\mathbf{i} + z\mathbf{j}+(y+2z)\mathbf{k})\cdot \dfrac{1}{\sqrt{6}}(2\mathbf{i}-\mathbf{j} + \mathbf{k})=\\
=\dfrac{1}{\sqrt{6}}(4x-z+y+2z) = \dfrac{1}{\sqrt{6}}(4x+y+z) ∇ n f = ( 2 x i + z j + ( y + 2 z ) k ) ⋅ 6 1 ( 2 i − j + k ) = = 6 1 ( 4 x − z + y + 2 z ) = 6 1 ( 4 x + y + z ) Substituting point (1,2,1), obtain:
1 6 ( 4 ⋅ 1 + 2 + 1 ) = 7 6 \dfrac{1}{\sqrt{6}}(4\cdot 1+2+1) = \dfrac{7}{\sqrt{6}} 6 1 ( 4 ⋅ 1 + 2 + 1 ) = 6 7 Answer. 7 6 \dfrac{7}{\sqrt{6}} 6 7 .
Comments