The directional derivative in the direction of "\\mathbf{n} = \\dfrac23\\mathbf{i}-\\dfrac13\\mathbf{j} + \\dfrac13\\mathbf{k}" is given as follows:
"\\nabla_{\\mathbf{n}}f = \\nabla f\\cdot \\dfrac{\\mathbf{n}}{|\\mathbf{n}|}" where "\\nabla f" is the gradient of "f". Thus, obtain:
"\\nabla f = 2x\\mathbf{i} + z\\mathbf{j}+(y+2z)\\mathbf{k}\\\\\n|\\mathbf{n}| = \\sqrt{\\dfrac49 + \\dfrac19 + \\dfrac19} = \\dfrac{\\sqrt{6}}{3}\\\\\n\\dfrac{\\mathbf{n}}{|\\mathbf{n}|} = \\dfrac{1}{\\sqrt{6}}(2\\mathbf{i}-\\mathbf{j} + \\mathbf{k})" Finally,
"\\nabla_{\\mathbf{n}}f = (2x\\mathbf{i} + z\\mathbf{j}+(y+2z)\\mathbf{k})\\cdot \\dfrac{1}{\\sqrt{6}}(2\\mathbf{i}-\\mathbf{j} + \\mathbf{k})=\\\\\n=\\dfrac{1}{\\sqrt{6}}(4x-z+y+2z) = \\dfrac{1}{\\sqrt{6}}(4x+y+z)"Substituting point (1,2,1), obtain:
"\\dfrac{1}{\\sqrt{6}}(4\\cdot 1+2+1) = \\dfrac{7}{\\sqrt{6}}"Answer. "\\dfrac{7}{\\sqrt{6}}".
Comments
Leave a comment