We are given
"q_1=q_2=q=+4.8 \\cdot 10^{-6}C"
"q_3=-6.36 \\cdot 10^{-6}C"
"r=0.13m"
Force acting on charge q3 from the side of charge q1
"F_{13}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q_1 \\cdot q_3}{r^2}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q \\cdot q_3}{r^2}"
Force acting on charge q3 from the side of charge q2
"F_{23}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q_2 \\cdot q_3}{r^2}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q \\cdot q_3}{r^2}"
"F_{13}=F_{23}=F_0"
Then behind the cosine theorem we write
"F^2=F_{13}^2+F_{23}^2-2 \\cdot F_{13} \\cdot F_{23} \\cdot \\cos(\\gamma)"
"F^2=F_{13}^2+F_{23}^2-2 \\cdot F_{13} \\cdot F_{23} \\cdot \\cos(180^0-2 \\alpha)"
"F^2=2F_{0}^2+2 F_{0}^2 \\cdot \\cos(2 \\alpha)=2F_0^2 \\cdot (1+\\cos(60^0))"
"F^2=2F_0^2 \\cdot (1+\\frac{1}{2})=2F_0^2 \\cdot \\frac{3}{2}=3 \\cdot F_0^2"
"F=\\sqrt {3} \\cdot F_0=\\sqrt {3} \\cdot\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q \\cdot q_3}{r^2}"
"F=\\sqrt {3} \\cdot\\frac{1}{4 \\pi\\cdot 8.854 \\cdot 10^{-12} } \\cdot \\frac{4.8 \\cdot 10^{-6} \\cdot 6.36 \\cdot 10^{-6}}{0.13^2}=28.12N"
Comments
Leave a comment