Answer to Question #142638 in Electricity and Magnetism for Marry

Question #142638
Two positive charges, each of 4.8 µC, and negative charge -6.36 µC are fixed at the vertices of an equilateral triangle of side 13 cm. Find the electrical force on negative charge.
1
Expert's answer
2020-11-06T10:14:04-0500


We are given

"q_1=q_2=q=+4.8 \\cdot 10^{-6}C"

"q_3=-6.36 \\cdot 10^{-6}C"

"r=0.13m"

Force acting on charge q3 from the side of charge q1

"F_{13}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q_1 \\cdot q_3}{r^2}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q \\cdot q_3}{r^2}"

Force acting on charge q3 from the side of charge q2

"F_{23}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q_2 \\cdot q_3}{r^2}=\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q \\cdot q_3}{r^2}"

"F_{13}=F_{23}=F_0"

Then behind the cosine theorem we write

"F^2=F_{13}^2+F_{23}^2-2 \\cdot F_{13} \\cdot F_{23} \\cdot \\cos(\\gamma)"

"F^2=F_{13}^2+F_{23}^2-2 \\cdot F_{13} \\cdot F_{23} \\cdot \\cos(180^0-2 \\alpha)"

"F^2=2F_{0}^2+2 F_{0}^2 \\cdot \\cos(2 \\alpha)=2F_0^2 \\cdot (1+\\cos(60^0))"

"F^2=2F_0^2 \\cdot (1+\\frac{1}{2})=2F_0^2 \\cdot \\frac{3}{2}=3 \\cdot F_0^2"

"F=\\sqrt {3} \\cdot F_0=\\sqrt {3} \\cdot\\frac{1}{4 \\pi\\epsilon_0 } \\cdot \\frac{q \\cdot q_3}{r^2}"


"F=\\sqrt {3} \\cdot\\frac{1}{4 \\pi\\cdot 8.854 \\cdot 10^{-12} } \\cdot \\frac{4.8 \\cdot 10^{-6} \\cdot 6.36 \\cdot 10^{-6}}{0.13^2}=28.12N"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS