Question #142638
Two positive charges, each of 4.8 µC, and negative charge -6.36 µC are fixed at the vertices of an equilateral triangle of side 13 cm. Find the electrical force on negative charge.
1
Expert's answer
2020-11-06T10:14:04-0500


We are given

q1=q2=q=+4.8106Cq_1=q_2=q=+4.8 \cdot 10^{-6}C

q3=6.36106Cq_3=-6.36 \cdot 10^{-6}C

r=0.13mr=0.13m

Force acting on charge q3 from the side of charge q1

F13=14πϵ0q1q3r2=14πϵ0qq3r2F_{13}=\frac{1}{4 \pi\epsilon_0 } \cdot \frac{q_1 \cdot q_3}{r^2}=\frac{1}{4 \pi\epsilon_0 } \cdot \frac{q \cdot q_3}{r^2}

Force acting on charge q3 from the side of charge q2

F23=14πϵ0q2q3r2=14πϵ0qq3r2F_{23}=\frac{1}{4 \pi\epsilon_0 } \cdot \frac{q_2 \cdot q_3}{r^2}=\frac{1}{4 \pi\epsilon_0 } \cdot \frac{q \cdot q_3}{r^2}

F13=F23=F0F_{13}=F_{23}=F_0

Then behind the cosine theorem we write

F2=F132+F2322F13F23cos(γ)F^2=F_{13}^2+F_{23}^2-2 \cdot F_{13} \cdot F_{23} \cdot \cos(\gamma)

F2=F132+F2322F13F23cos(18002α)F^2=F_{13}^2+F_{23}^2-2 \cdot F_{13} \cdot F_{23} \cdot \cos(180^0-2 \alpha)

F2=2F02+2F02cos(2α)=2F02(1+cos(600))F^2=2F_{0}^2+2 F_{0}^2 \cdot \cos(2 \alpha)=2F_0^2 \cdot (1+\cos(60^0))

F2=2F02(1+12)=2F0232=3F02F^2=2F_0^2 \cdot (1+\frac{1}{2})=2F_0^2 \cdot \frac{3}{2}=3 \cdot F_0^2

F=3F0=314πϵ0qq3r2F=\sqrt {3} \cdot F_0=\sqrt {3} \cdot\frac{1}{4 \pi\epsilon_0 } \cdot \frac{q \cdot q_3}{r^2}


F=314π8.85410124.81066.361060.132=28.12NF=\sqrt {3} \cdot\frac{1}{4 \pi\cdot 8.854 \cdot 10^{-12} } \cdot \frac{4.8 \cdot 10^{-6} \cdot 6.36 \cdot 10^{-6}}{0.13^2}=28.12N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS