4.
A.
The diagram at right shows two charged objects that are separated by a distance L. Object #1 bears a
charge +7Q and object #2 a charge of ‒4Q. A point in space, P, is located a distance y directly above object
#2.
Write an expression for the y-component of the net electric field at point P. (xmm)
B. Write an expression for the net electric potential at point P.
C. Rederive your expression for the y-component of the electric field from part A, this time by taking the negative gradient of the electric potential expression you derived in part B. Note: little credit will be awarded for an answer that is not fully explained.
As per the given question,
magnitude of charge 1 on one end "(Q_1)=7Q"
magnitude of charge 2 on other end "(Q_2)=-4Q"
these two charges 1 and 2 are situated at a distance of L to each other.
point p is placed at a distance y, from the middle of line joining charges.
Net electric field at the point P,
"\\Rightarrow E_y=\\frac{7Q}{4\\pi \\epsilon_o ((\\frac{L}{2})^2+y^2)}\\cos\\theta_1+\\frac{4Q}{4\\pi \\epsilon_o ((\\frac{L}{2})^2+y^2)}\\cos\\theta_2"
"\\Rightarrow E_y =\\frac{56Q}{4\\pi \\epsilon_o(L^2+4y^2)}\\frac{y}{\\sqrt{ ((L^2)^2+y^2)}}+\\frac{8Q}{4\\pi \\epsilon_o ((L^2)^2+y^2)}\\frac{y}{\\sqrt{ ((L^2)^2+y^2)}}"
"\\Rightarrow E_y= \\frac{64Q}{4\\pi \\epsilon_o ((L^2)^2+y^2)}\\frac{y}{\\sqrt{ ((L^2)^2+y^2)}} \\hat{j}N\/coulamb"
Net electric field along the x axis,
"\\Rightarrow E_x=\\frac{7Q}{4\\pi \\epsilon_o ((\\frac{L}{2})^2+y^2)}\\sin\\theta_1+\\frac{4Q}{4\\pi \\epsilon_o ((\\frac{L}{2})^2+y^2)}\\sin\\theta_2"
"\\Rightarrow E_x =\\frac{28Q}{4\\pi \\epsilon_o(L^2+4y^2)}\\frac{L}{\\sqrt{ ((L^2)^2+y^2)}}+\\frac{4Q}{4\\pi \\epsilon_o ((L^2)^2+y^2)}\\frac{L}{\\sqrt{ ((L^2)^2+y^2)}}"
"\\Rightarrow E_x=\\frac{32Q}{4\\pi \\epsilon_o ((L^2)^2+y^2)}\\frac{L}{\\sqrt{ ((L^2)^2+y^2)}} \\hat{i}"
Hence, net electric field
"E=E_x\\hat{i}+E_y\\hat{j}"
"\\Rightarrow E_{net}=\\frac{32Q}{4\\pi \\epsilon_o ((L^2)^2+y^2)}\\frac{L}{\\sqrt{ ((L^2)^2+y^2)}} \\hat{i}+ \\frac{64Q}{4\\pi \\epsilon_o ((L^2)^2+y^2)}\\frac{y}{\\sqrt{ ((L^2)^2+y^2)}} \\hat{j}"
Net potential at the point P,
"\\Rightarrow V=V_1+V_2"
"\\Rightarrow V=\\frac{7Q}{4\\pi \\epsilon \\sqrt{ ((L^2)^2+y^2)}}-\\frac{4Q}{4\\pi \\epsilon \\sqrt{ ((L^2)^2+y^2)}}"
"\\Rightarrow V=\\frac{3Q}{4\\pi \\epsilon \\sqrt{ ((L^2)^2+y^2)}}"
As the mentioned diagram is not given in the question, hence the situation telling in the question is not solvable.
Comments
Leave a comment