As per the given question,
capacitance of the parallel plate capacitor = c
distance between the parallel plate capacitor =d
dielectric constant of the material =k
Resistance of the resistor =R
Voltage across the circuit=V
we know that "c=\\frac{k\\epsilon_o A}{d}"
charge increase with respect to the time "Q = C V (1-e^{\u2212\\frac{t}{RC}})"
Hence, "\\frac{dQ}{dt}=\\frac{CVt}{RC} e^{\\frac{-t}{Rc}}= \\frac{Vt}{R}e^{\\frac{-t}{Rc}}"
We know that magnetic field at a distance r from the plate is,
"B=\\frac{\\mu_o}{2\\pi r}\\frac{dQ(t)}{dt}"
Now, substituting the values,
"\\Rightarrow B=\\frac{\\mu_o}{2\\pi r}\\frac{Vt}{R}e^{\\frac{-t}{Rc}} =\\frac{\\mu_o}{2\\pi r}\\frac{Vt}{R}e^{\\frac{-t}{R\\frac{k\\epsilon_o A}{d}}}"
"\\Rightarrow B=\\frac{\\mu_o}{2\\pi r}\\frac{Vt}{R}e^{\\frac{-td}{Rk\\epsilon_o A}}"
Comments
Leave a comment