"F=k\\frac{q_1q_2}{r^2}" and "q_1+q_2=20"
So, we have
"F=k\\frac{q_1(20-q_1)}{r^2}\\to q_1^2-20q_1+\\frac{Fr^2}{k}=0" or
(a)
"q_1^2-20q_1+2.083\\cdot 10^{-5}=0 \\to q_1=19.99999895834995" "C" or
"q_1=0.000001041650053323906" "C"
"q_2=0.000001041650053323906" "C" or "q_2=19.99999895834995" "C" accordingly.
(b)
"q_1^2-20q_1+2.083\\cdot 10^{-6}=0 \\to q_1=19.999999895835" "C" or
"q_1=1.0416500018095576\\cdot10^{-7}" "C"
"q_2=1.0416500018095576\\cdot10^{-7}" "C" or "q_2=19.999999895835" "C" accordingly.
(c)
"q_1^2-20q_1+2.083\\cdot 10^{-7}=0 \\to q_1=19.9999999895835" "C" or
"q_1= 1.0416499662824208\\cdot 10^{-8}" "C"
"q_2=1.0416499662824208\\cdot 10^{-8}" "C" or "q_2=19.9999999895835" "C" accordingly.
Comments
Leave a comment