∫EdA=qϵ0→E=4πR2⋅e4πr2⋅ϵ0=R2⋅er2⋅ϵ0\int{EdA}=\frac{q}{\epsilon_0}\to E=\frac{4\pi R^2\cdot e}{4\pi r^2\cdot \epsilon_0}=\frac{R^2\cdot e}{r^2\cdot \epsilon_0}∫EdA=ϵ0q→E=4πr2⋅ϵ04πR2⋅e=r2⋅ϵ0R2⋅e
E=−dϕdr→ϕ=−∫R2⋅er2⋅ϵ0dr→ϕ=R2⋅eϵ0⋅1rE=-\frac{d\phi}{dr}\to \phi=-\int{\frac{R^2\cdot e}{r^2\cdot \epsilon_0}}dr\to \phi=\frac{R^2\cdot e}{ \epsilon_0}\cdot \frac{1}{r}E=−drdϕ→ϕ=−∫r2⋅ϵ0R2⋅edr→ϕ=ϵ0R2⋅e⋅r1
If r=Rr=Rr=R
E=R2⋅er2⋅ϵ0=eϵ0=1.6⋅10−198.85⋅10−12=1.81⋅10−8V/mE=\frac{R^2\cdot e}{r^2\cdot \epsilon_0}=\frac{e}{\epsilon_0}=\frac{1.6\cdot10^{-19}}{8.85\cdot 10^{-12}}=1.81\cdot10^{-8}V/mE=r2⋅ϵ0R2⋅e=ϵ0e=8.85⋅10−121.6⋅10−19=1.81⋅10−8V/m
ϕ=R⋅eϵ0=6400000⋅1.6⋅10−198.85⋅10−12=0.116V\phi=\frac{R\cdot e}{ \epsilon_0}=\frac{6400000\cdot 1.6\cdot10^{-19}}{ 8.85\cdot 10^{-12}}=0.116Vϕ=ϵ0R⋅e=8.85⋅10−126400000⋅1.6⋅10−19=0.116V
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments