Answers:
(a) this equation remain valid if the point P is located at negative y-axis if we put y=-y, because the electric field is a vector quantity and became point out in a negative direction of Y axis. That is
"E(-|y|)=-E(|y|)"
(b) "E= \\frac {1}{4\u03c0\u03b5_0}\\frac{q} {x\\cdot \\sqrt{x^2+L^2\/4}}"
(c) "\\vec E= \\frac {1}{4\u03c0\u03b5_0}\\frac{q\\cdot (\\hat i\\cdot cos(45\\degree)+\\hat j\\cdot sin(45\\degree))} {d\\cdot \\sqrt{d^2+L^2\/4}}=\\\\= \\frac {\\sqrt{2}}{8\u03c0\u03b5_0}\\frac{q\\cdot (\\hat i+\\hat j)} {d\\cdot \\sqrt{d^2+L^2\/4}}"
(d)"\\vec E= \\frac {1}{4\u03c0\u03b5_0}\\frac{q\\vec r} {r^2\\cdot \\sqrt{r^2+L^2\/4}}" where "\\vec r=x\\hat i+y\\hat j" .
Will check
(1) "\\vec r=y\\hat j" "->" "\\vec E= \\frac {1}{4\u03c0\u03b5_0}\\frac{qy\\hat j} {y^2\\cdot \\sqrt{y^2+L^2\/4}} =\\hat j \\cdot \\frac {1}{4\u03c0\u03b5_0}\\frac{q} {y\\cdot \\sqrt{y^2+L^2\/4}}" ;
(2) "\\vec r=-y\\hat j" "->" "\\vec E= \\frac {1}{4\u03c0\u03b5_0}\\frac{q (-y)\\hat j} {y^2\\cdot \\sqrt{y^2+L^2\/4}} =-\\hat j \\cdot \\frac {1}{4\u03c0\u03b5_0}\\frac{q} {y\\cdot \\sqrt{y^2+L^2\/4}}" ;
(3) "\\vec r=x\\hat i" "->" "\\vec E= \\frac {1}{4\u03c0\u03b5_0}\\frac{q x\\hat i} {x^2\\cdot \\sqrt{x^2+L^2\/4}} =\\hat i \\cdot \\frac {1}{4\u03c0\u03b5_0}\\frac{q} {x\\cdot \\sqrt{x^2+L^2\/4}}" ;
(4) "\\vec r=-x\\hat i" "->" "\\vec E= \\frac {1}{4\u03c0\u03b5_0}\\frac{q (-x)\\hat i} {x^2\\cdot \\sqrt{x^2+L^2\/4}} =-\\hat i \\cdot \\frac {1}{4\u03c0\u03b5_0}\\frac{q} {x\\cdot \\sqrt{x^2+L^2\/4}}"
Comments
Leave a comment