Assume that the linear charge density is "\\lambda=q\/L." Split our wire into many pieces charged "dq=\\lambda dx" each. The x-component of the field will cancel, the y-component will add. The field will be
"dE_y=\\frac{kdq}{r^2}\\frac{y}{r}=\\frac{k\\lambda y}{(x^2+y^2)^{3\/2}}dx." Integrate this from "-L\/2" to "+L\/2" :
"E=\\int^{L\/2}_{-L\/2} \\frac{k\\lambda y}{(x^2+y^2)^{3\/2}}dx=k\\lambda \\frac{L}{y\\sqrt{y^2+L^2\/4}}=\\\\\n\\space\\\\\n=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q}{y\\sqrt{y^2+L^2\/4}}."
Comments
Leave a comment