scalar field ϕ ( x , y , z ) = 3 x 2 y − y 3 z 2 \phi (x,y,z)=3x^2y-y^3z^2 ϕ ( x , y , z ) = 3 x 2 y − y 3 z 2
point M ( 1 ; − 2 ; − 1 ) M(1;-2;-1) M ( 1 ; − 2 ; − 1 )
direction i ⃗ + j ⃗ + k ⃗ \vec{i}+\vec{j}+\vec{k} i + j + k with normalized vector n ⃗ ( 1 3 ; 1 3 ; 1 3 ) \vec{n}({\frac 1 {\sqrt3}};{\frac 1 {\sqrt3}};{\frac 1 {\sqrt3}}) n ( 3 1 ; 3 1 ; 3 1 )
To find directional derivative we need to get scalar product g r a d ( ϕ ) ⋅ n ⃗ grad(\phi )\cdot \vec{n} g r a d ( ϕ ) ⋅ n
g r a d ( ϕ ) = ( ∂ ϕ ∂ x ; ∂ ϕ ∂ y ; ∂ ϕ ∂ z ) grad(\phi)=({\frac {\partial\phi} {\partial x}};{\frac {\partial\phi} {\partial y}};{\frac {\partial\phi} {\partial z}}) g r a d ( ϕ ) = ( ∂ x ∂ ϕ ; ∂ y ∂ ϕ ; ∂ z ∂ ϕ ) at point M M M
∂ ϕ ∂ x = 6 x y = − 12 {\frac {\partial\phi} {\partial x}}=6xy=-12 ∂ x ∂ ϕ = 6 x y = − 12
∂ ϕ ∂ y = 3 x 2 − 3 y 2 z 2 = − 9 {\frac {\partial\phi} {\partial y}}=3x^2-3y^2z^2=-9 ∂ y ∂ ϕ = 3 x 2 − 3 y 2 z 2 = − 9
∂ ϕ ∂ z = − 2 y 3 z = − 16 {\frac {\partial\phi} {\partial z}}=-2y^3z=-16 ∂ z ∂ ϕ = − 2 y 3 z = − 16
Then g r a d ( ϕ ) = ( − 12 ; − 9 ; 16 ) grad(\phi)=(-12;-9;16) g r a d ( ϕ ) = ( − 12 ; − 9 ; 16 )
Directional derivative equal g r a d ( ϕ ) ⋅ n ⃗ = − 12 ⋅ 1 3 − 9 ⋅ 1 3 − 16 ⋅ 1 3 = − 37 3 grad(\phi )\cdot \vec{n}=-12\cdot{\frac 1 {\sqrt3}}-9\cdot{\frac 1 {\sqrt3}}-16\cdot{\frac 1 {\sqrt3}}=-{\frac {37} {\sqrt3}} g r a d ( ϕ ) ⋅ n = − 12 ⋅ 3 1 − 9 ⋅ 3 1 − 16 ⋅ 3 1 = − 3 37
Comments