scalar field "\\phi (x,y,z)=3x^2y-y^3z^2"
point "M(1;-2;-1)"
direction "\\vec{i}+\\vec{j}+\\vec{k}" with normalized vector "\\vec{n}({\\frac 1 {\\sqrt3}};{\\frac 1 {\\sqrt3}};{\\frac 1 {\\sqrt3}})"
To find directional derivative we need to get scalar product "grad(\\phi )\\cdot \\vec{n}"
"grad(\\phi)=({\\frac {\\partial\\phi} {\\partial x}};{\\frac {\\partial\\phi} {\\partial y}};{\\frac {\\partial\\phi} {\\partial z}})" at point "M"
"{\\frac {\\partial\\phi} {\\partial x}}=6xy=-12"
"{\\frac {\\partial\\phi} {\\partial y}}=3x^2-3y^2z^2=-9"
"{\\frac {\\partial\\phi} {\\partial z}}=-2y^3z=-16"
Then "grad(\\phi)=(-12;-9;16)"
Directional derivative equal "grad(\\phi )\\cdot \\vec{n}=-12\\cdot{\\frac 1 {\\sqrt3}}-9\\cdot{\\frac 1 {\\sqrt3}}-16\\cdot{\\frac 1 {\\sqrt3}}=-{\\frac {37} {\\sqrt3}}"
Comments
Leave a comment