Question #110866
four-point charges are located at the corners of a square, 1.00 m by 1.00 m. On each
of two diagonally opposite corners are 1.00 μC charges. On each of the other two
corners are -1.00 μC charges. What is the magnitude of the force on one of the
positive charges?
1
Expert's answer
2020-04-21T10:53:09-0400

Given:-

charge(q)=1.0μCdistance(a)=1.0mFindmagnitudeoftheforceononeofthepositivecharges\\charge(q)=1.0\mu C\\[5pt] distance(a)=1.0m\\[5pt] Find \,magnitude\, of\, the \,force \,on\, one\, of\, the\,positive\, charges

Now,

Alongthediagonalsthecentreofthesquare.Thechargesattracteachotherwithaforcek=q2a2\\Along \,the\,diagonals\, the \,centre\, of\, the\, square .\\[5pt] The\, charges\, attract\, each\, other\, with\, a \,forcek\, =\frac{q^{2}}{a^{2}}\\[5pt]

Their  Resultant(R)=2Fcos45=(1.414k.q2a2)AlsoThediagononallyoppositechargesrepeleachotherwithaforce(F)=k.(q22a2)actingalongthediagonaloutward.\therefore \\ Their\;Resultant\,(R)=2Fcos45=(1.414\,k.\frac{q^2}{a^2})\\[5pt] Also\,The\, diagononally\,opposite\,charges\, repel \,each\,other\,\\[5pt] with\, a\, force\,(F')=k.(\frac{q^2}{2a^2})\, acting\, along\, the\,diagonal\,outward.\\[5pt]

so,thenetforceistheF=(1.414k.q2a20.5k.q2a2)NowForce(F)=(0.914k.q2a2)MagnitudeofforceF=(0.914×(9×109Nm2c2)×(1×106C)2(1.0m)2)MagnitudeofforceF=0.0081NAlongthediagonaltowardsthecentreofthesquare\\so,\\[5pt] the\,net\,force\,is \,the\,\sum F=\left ( 1.414\,k.\frac{q^2}{a^2}-0.5\,k.\frac{q^2}{a^2} \right )\\[10pt] Now\,\\[5pt] Force (F)=\left ( 0.914\,k.\frac{q^2}{a^2} \right )\\[10pt] Magnitude\,of\,force\,F=\left ( 0.914\,\times (9\times 10^{9}N\frac{m^2}{c^2})\times \frac{(1\times 10^{-6}C)^2}{(1.0m)^2} \right )\\[10pt] Magnitude\,of\,force\,F=0.0081\,N\\[10pt] Along\,the\,diagonal\,towards\,the\,centre\,of\,the\,square\,


Answer:-

The magnitude of the force on one of the positive charges

Force(F)=0.0081 N





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS