Given:-
"\\\\charge(q)=1.0\\mu C\\\\[5pt]\ndistance(a)=1.0m\\\\[5pt]\nFind \\,magnitude\\, of\\, the \\,force \\,on\\, one\\, of\\, the\\,positive\\, charges"
Now,
"\\\\Along \\,the\\,diagonals\\, the \\,centre\\, of\\, the\\, square .\\\\[5pt]\nThe\\, charges\\, attract\\, each\\, other\\, with\\, a \\,forcek\\, =\\frac{q^{2}}{a^{2}}\\\\[5pt]"
"\\therefore \\\\\nTheir\\;Resultant\\,(R)=2Fcos45=(1.414\\,k.\\frac{q^2}{a^2})\\\\[5pt]\nAlso\\,The\\, diagononally\\,opposite\\,charges\\, repel \\,each\\,other\\,\\\\[5pt]\nwith\\, a\\, force\\,(F')=k.(\\frac{q^2}{2a^2})\\, acting\\, along\\, the\\,diagonal\\,outward.\\\\[5pt]"
"\\\\so,\\\\[5pt]\nthe\\,net\\,force\\,is \\,the\\,\\sum F=\\left ( 1.414\\,k.\\frac{q^2}{a^2}-0.5\\,k.\\frac{q^2}{a^2} \\right )\\\\[10pt]\nNow\\,\\\\[5pt]\nForce (F)=\\left ( 0.914\\,k.\\frac{q^2}{a^2} \\right )\\\\[10pt]\nMagnitude\\,of\\,force\\,F=\\left ( 0.914\\,\\times (9\\times 10^{9}N\\frac{m^2}{c^2})\\times \\frac{(1\\times 10^{-6}C)^2}{(1.0m)^2} \\right )\\\\[10pt]\nMagnitude\\,of\\,force\\,F=0.0081\\,N\\\\[10pt]\n\nAlong\\,the\\,diagonal\\,towards\\,the\\,centre\\,of\\,the\\,square\\,"
Answer:-
The magnitude of the force on one of the positive charges
Force(F)=0.0081 N
Comments
Leave a comment