Answer to Question #110866 in Electricity and Magnetism for Habiba

Question #110866
four-point charges are located at the corners of a square, 1.00 m by 1.00 m. On each
of two diagonally opposite corners are 1.00 μC charges. On each of the other two
corners are -1.00 μC charges. What is the magnitude of the force on one of the
positive charges?
1
Expert's answer
2020-04-21T10:53:09-0400

Given:-

"\\\\charge(q)=1.0\\mu C\\\\[5pt]\ndistance(a)=1.0m\\\\[5pt]\nFind \\,magnitude\\, of\\, the \\,force \\,on\\, one\\, of\\, the\\,positive\\, charges"

Now,

"\\\\Along \\,the\\,diagonals\\, the \\,centre\\, of\\, the\\, square .\\\\[5pt]\nThe\\, charges\\, attract\\, each\\, other\\, with\\, a \\,forcek\\, =\\frac{q^{2}}{a^{2}}\\\\[5pt]"

"\\therefore \\\\\nTheir\\;Resultant\\,(R)=2Fcos45=(1.414\\,k.\\frac{q^2}{a^2})\\\\[5pt]\nAlso\\,The\\, diagononally\\,opposite\\,charges\\, repel \\,each\\,other\\,\\\\[5pt]\nwith\\, a\\, force\\,(F')=k.(\\frac{q^2}{2a^2})\\, acting\\, along\\, the\\,diagonal\\,outward.\\\\[5pt]"

"\\\\so,\\\\[5pt]\nthe\\,net\\,force\\,is \\,the\\,\\sum F=\\left ( 1.414\\,k.\\frac{q^2}{a^2}-0.5\\,k.\\frac{q^2}{a^2} \\right )\\\\[10pt]\nNow\\,\\\\[5pt]\nForce (F)=\\left ( 0.914\\,k.\\frac{q^2}{a^2} \\right )\\\\[10pt]\nMagnitude\\,of\\,force\\,F=\\left ( 0.914\\,\\times (9\\times 10^{9}N\\frac{m^2}{c^2})\\times \\frac{(1\\times 10^{-6}C)^2}{(1.0m)^2} \\right )\\\\[10pt]\nMagnitude\\,of\\,force\\,F=0.0081\\,N\\\\[10pt]\n\nAlong\\,the\\,diagonal\\,towards\\,the\\,centre\\,of\\,the\\,square\\,"


Answer:-

The magnitude of the force on one of the positive charges

Force(F)=0.0081 N





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS