"q=2\\times 10^{-8},\\ p=-4\\times 10^{-8}, \\ r=3\\times 10^{-8},\\ s=4\\times 10^{-8}"
"a=1\\ m"
The potential at the center of the square is equal to the algebraic sum of the potentials at the center due to each of the charges individually.
"V_0= V_1+V_2+V_3+V_4"
"V_1=\\frac{kq}{R}=\\frac{kq}{a\/\\sqrt{2}}=\\frac{k\\sqrt{2}}{a}q"
"V_2=\\frac{k\\sqrt{2}}{a}p, \\ V_3=\\frac{k\\sqrt{2}}{a}r, \\ V_4=\\frac{k\\sqrt{2}}{a}s"
"V_0=\\frac{k\\sqrt{2}}{a}(q+p+r+s)"
"V_0=\\frac{9\\times 10^9\\times \\sqrt{2}}{1}(2-4+3+4)\\times 10^{-8}=636.4 \\ V"
Answer: "636.4 \\ V"
Comments
Leave a comment