Question #104210
A non-conducting sphere of radius 1.0 m carrying net positive charge18nC is enclosed by a concentric non-conducting thin spherical shell of radius 2.0 m carrying net negative charge 20nC. Determine the electric fields at the distances of 0.5 m, 1.5 m, and 2.5 m, respectively, from the centre of the sphere.
1
Expert's answer
2020-03-02T10:14:27-0500


(1)r=0.5mr=0.5m


According to the Gauss's law


EdA=1ϵ0qi\int {E\cdot dA}=\frac{1}{\epsilon_0}\sum q_i


E4πr2=1ϵ0q14/3πR134/3πr3E=q14πϵ0R13r=E\cdot 4\pi r^2=\frac{1}{\epsilon_0}\frac{q_1}{4/3\cdot\pi \cdot R^3_1}\cdot 4/3 \cdot\pi \cdot r^3\to E=\frac{q_1}{4\pi \epsilon_0R^3_1}\cdot r=


=1810943.148.851012130.5162V/m=\frac{18\cdot10^{9}}{4\cdot 3.14\cdot 8.85\cdot 10^{-12}\cdot 1^3}\cdot 0.5\approx162V/m Answer


(2)r=1.5mr=1.5m


EdA=1ϵ0qi\int {E\cdot dA}=\frac{1}{\epsilon_0}\sum q_i


E4πr2=1ϵ0(q1)E=q14πϵ0r2=E\cdot 4\pi r^2=\frac{1}{\epsilon_0}(q_1)\to E=\frac{q_1}{4\pi \epsilon_0r^2}=


=1810943.148.8510121.5272V/m=\frac{18\cdot10^{-9}}{4\cdot 3.14\cdot 8.85\cdot10^{-12}\cdot 1.5^2}\approx72 V/m Answer


(3) r=2.5mr=2.5m


EdA=1ϵ0qi\int {E\cdot dA}=\frac{1}{\epsilon_0}\sum q_i


E4πr2=1ϵ0(q1q2)E=q1q24πϵ0r2=E\cdot 4\pi r^2=\frac{1}{\epsilon_0}(q_1-q_2)\to E=\frac{q_1-q_2}{4\pi \epsilon_0r^2}=


=(1820)10943.148.8510122.521.31V/m=\frac{(18-20)\cdot10^{-9}}{4\cdot 3.14\cdot 8.85\cdot10^{-12}\cdot 2.5^2}\approx-1.31 V/m Answer










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS