(1)"r=0.5m"
According to the Gauss's law
"\\int {E\\cdot dA}=\\frac{1}{\\epsilon_0}\\sum q_i"
"E\\cdot 4\\pi r^2=\\frac{1}{\\epsilon_0}\\frac{q_1}{4\/3\\cdot\\pi \\cdot R^3_1}\\cdot 4\/3 \\cdot\\pi \\cdot r^3\\to E=\\frac{q_1}{4\\pi \\epsilon_0R^3_1}\\cdot r="
"=\\frac{18\\cdot10^{9}}{4\\cdot 3.14\\cdot 8.85\\cdot 10^{-12}\\cdot 1^3}\\cdot 0.5\\approx162V\/m" Answer
(2)"r=1.5m"
"\\int {E\\cdot dA}=\\frac{1}{\\epsilon_0}\\sum q_i"
"E\\cdot 4\\pi r^2=\\frac{1}{\\epsilon_0}(q_1)\\to E=\\frac{q_1}{4\\pi \\epsilon_0r^2}="
"=\\frac{18\\cdot10^{-9}}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}\\cdot 1.5^2}\\approx72 V\/m" Answer
(3) "r=2.5m"
"\\int {E\\cdot dA}=\\frac{1}{\\epsilon_0}\\sum q_i"
"E\\cdot 4\\pi r^2=\\frac{1}{\\epsilon_0}(q_1-q_2)\\to E=\\frac{q_1-q_2}{4\\pi \\epsilon_0r^2}="
"=\\frac{(18-20)\\cdot10^{-9}}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}\\cdot 2.5^2}\\approx-1.31 V\/m" Answer
Comments
Leave a comment