Let's clarify the condition. So, we have
The current I = 100 A I=100A I = 100 A flows along the solenoid of length L = 100 m m L=100 mm L = 100 mm and radius R = 100 m m R=100 mm R = 100 mm . Find the induction of the magnetic field in the center of the solenoid. The number of solenoid turns N = 100 N=100 N = 100 and μ = 1 \mu =1 μ = 1 .
B = μ μ 0 I N 2 L ( cos α 2 − cos α 1 ) B=\frac {\mu \mu_0IN}{2L}(\cos \alpha_2-\cos \alpha_1) B = 2 L μ μ 0 I N ( cos α 2 − cos α 1 )
cos α 1 = cos ( 90 ° + 45 ° ) = − sin 45 ° = − R R 2 + R 2 = − 1 2 \cos \alpha_1=\cos(90°+45°)=-\sin 45°=-\frac{R}{\sqrt{R^2+R^2}}=-\frac{1}{\sqrt{2}} cos α 1 = cos ( 90° + 45° ) = − sin 45° = − R 2 + R 2 R = − 2 1
cos α 2 = cos ( 45 ° ) = 1 2 \cos \alpha_2=\cos(45°)=\frac{1}{\sqrt{2}} cos α 2 = cos ( 45° ) = 2 1
B = μ μ 0 I N 2 L ( 1 2 + 1 2 ) = B=\frac {\mu \mu_0IN}{2L}(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})= B = 2 L μ μ 0 I N ( 2 1 + 2 1 ) =
= 1 ⋅ 4 ⋅ 3.14 ⋅ 1 0 − 7 ⋅ 100 ⋅ 100 2 ⋅ 100 ( 1 2 + 1 2 ) ≈ 9 ⋅ 1 0 − 5 T =\frac {1\cdot 4\cdot 3.14 \cdot 10^{-7}\cdot 100\cdot 100}{2\cdot 100}(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})\approx9\cdot10^{-5} T = 2 ⋅ 100 1 ⋅ 4 ⋅ 3.14 ⋅ 1 0 − 7 ⋅ 100 ⋅ 100 ( 2 1 + 2 1 ) ≈ 9 ⋅ 1 0 − 5 T
Comments