E=E+−E−=14πϵ0qr+2−14πϵ0qr−2=E=E_+-E_-=\frac{1}{4\pi \epsilon_0}\frac{q}{r^2_+}-\frac{1}{4\pi \epsilon_0}\frac{q}{r^2_-}=E=E+−E−=4πϵ01r+2q−4πϵ01r−2q=
=14πϵ0q(z−12d)2−14πϵ0q(z+12d)2==\frac{1}{4\pi \epsilon_0}\frac{q}{(z-\frac{1}{2}d)^2}-\frac{1}{4\pi \epsilon_0}\frac{q}{(z+\frac{1}{2}d)^2}==4πϵ01(z−21d)2q−4πϵ01(z+21d)2q=
=q4πϵ0(1(1−d2z)2−1(1+d2z)2)==\frac{q}{4\pi \epsilon_0}(\frac{1}{(1-\frac{d}{2z})^2}-\frac{1}{(1+\frac{d}{2z})^2})==4πϵ0q((1−2zd)21−(1+2zd)21)=
=q4πϵ0z2⋅2d/z(1−(d2z)2)2=q2πϵ0z3⋅d(1−(d2z)2)2.=\frac{q}{4\pi \epsilon_0z^2}\cdot \frac{2d/z}{(1-(\frac{d}{2z})^2)^2}=\frac{q}{2\pi \epsilon_0z^3}\cdot \frac{d}{(1-(\frac{d}{2z})^2)^2}.=4πϵ0z2q⋅(1−(2zd)2)22d/z=2πϵ0z3q⋅(1−(2zd)2)2d.
z>>dz>>dz>>d
So, we have
E=qd2πϵ0z3=p2πϵ0z3E=\frac{qd}{2\pi \epsilon_0z^3}=\frac{p}{2\pi \epsilon_0z^3}E=2πϵ0z3qd=2πϵ0z3p.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments