"E=E_+-E_-=\\frac{1}{4\\pi \\epsilon_0}\\frac{q}{r^2_+}-\\frac{1}{4\\pi \\epsilon_0}\\frac{q}{r^2_-}="
"=\\frac{1}{4\\pi \\epsilon_0}\\frac{q}{(z-\\frac{1}{2}d)^2}-\\frac{1}{4\\pi \\epsilon_0}\\frac{q}{(z+\\frac{1}{2}d)^2}="
"=\\frac{q}{4\\pi \\epsilon_0}(\\frac{1}{(1-\\frac{d}{2z})^2}-\\frac{1}{(1+\\frac{d}{2z})^2})="
"=\\frac{q}{4\\pi \\epsilon_0z^2}\\cdot \\frac{2d\/z}{(1-(\\frac{d}{2z})^2)^2}=\\frac{q}{2\\pi \\epsilon_0z^3}\\cdot \\frac{d}{(1-(\\frac{d}{2z})^2)^2}."
"z>>d"
So, we have
"E=\\frac{qd}{2\\pi \\epsilon_0z^3}=\\frac{p}{2\\pi \\epsilon_0z^3}".
Comments
Leave a comment