As per the given question,
dx2d2u(x)+u(x)=f(x) ,0≤x≤a
let u(x)=A(x)coskx+B(x)sinkx ----(i)
now, taking the differenciation twice with respect to x equation (i) with
−kA′sinkx+kB′coskx=f(x)
−k2(A′coskx+B′sinkx)=u′′(x)
So, A′(x)=kf(x)sinkx and B′(x)=k−f(x)coskx
Now, We can write this equation as per the below
u(x)=ksinkx∫axf(y)sinkydy−kcoskx∫axf(y)coskydy
Now u(0)=0
∫a0f(y)sinkydy=0
So a=0
similarly,
∫axf(y)coskydy=0
so, u(a)=0
Hence, it is satisfying the condition.
Comments