Answer to Question #95756 in Electric Circuits for Faris Halim

Question #95756
A capacitor with double the area and double the dielectric thickness will have.

Option A. double the capacitance.
Option B. the same capacitance.
Option C. half the capacitance.
1
Expert's answer
2019-10-03T09:39:00-0400


The original capacitance is given by


Co=kεoAodoC_{o}=k\frac{\varepsilon_{o}A_{o}}{d_{o}}


Where

  • Dielectric constant KK
  • Parallel plate area AoA_{o}
  • distance between more plates dod_{o}



Considering two dielectrics of constanta K (equal) and width of dodo


Each half can be considered a capacitor, if it is assumed that the plates have an electric charge + Q and -Q, the electric field in each capacitor is:


E1=Qkεo2AoE2=Qkεo2AoE_{1}=\frac{Q}{k\varepsilon_{o} *2A_{o}} \\ E_{2}=\frac{Q}{k\varepsilon_{o} *2A_{o}} remember that you have twice the area Ao


The potential difference between the plates is equal to:


remember that each capacitor has a thickness do

V=E1do+E2doV=Qkεo2Ao+Qkεo2AoV=2Qkεo2AoV=QkεoAoV=E_{1}d_{o}+E_{2}d_{o} \\ V=\frac{Q}{k\varepsilon_{o} *2A_{o}}+\frac{Q}{k\varepsilon_{o} *2A_{o}} \\ V=2\frac{Q}{k\varepsilon_{o} *2A_{o}} \\V=\frac{Q}{k\varepsilon_{o} *A_{o}}


The new capacitance is equal to


C=QVC=QQkεoAoC=\frac{Q}{V} \\ C=\frac{Q}{\frac{Q}{k\varepsilon_{o} *A_{o}}}


Simplifying the new capacitance isC=kεoAoC=k\varepsilon_{o}A_{o}



Comparing with the original capacitance

CCo=kεoAokεoAodoCCo=1C=Co\frac{C}{C_{o}}=\frac{k\varepsilon_{o}A_{o}}{k\frac{\varepsilon_{o}A_{o}}{d_{o}}}\\\frac{C}{C_{o}}=1 \\C=C_{o}


Solution:Option B. the same capacitance.\boxed{\text{Option B. the same capacitance.}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment