Solution;
Find the potential at point a;
Due to 32nC;
U 32 , − 41 = k q 1 q 2 r U_{32,-41}=\frac{kq_1q_2}{r} U 32 , − 41 = r k q 1 q 2
U = 8.99 × 1 0 9 × 32 × − 41 × 1 0 − 18 0.1 = 1.179 × 1 0 − 4 J U=\frac{8.99×10^9×32×-41×10^{-18}}{0.1}=1.179×10^{-4}J U = 0.1 8.99 × 1 0 9 × 32 ×− 41 × 1 0 − 18 = 1.179 × 1 0 − 4 J
Due to the 24nC;
U = 8.99 × 1 0 9 × − 41 × 24 × 1 0 − 18 0.05 = 1.769 × 1 0 − 4 J U=\frac{8.99×10^9×-41×24×10^{-18}}{0.05}=1.769×10^{-4}J U = 0.05 8.99 × 1 0 9 ×− 41 × 24 × 1 0 − 18 = 1.769 × 1 0 − 4 J
Total potential energy at point a is;
U a = ( 1.179 + 1.769 ) × 1 0 − 4 = 2.948 × 1 0 − 4 J U_a=(1.179+1.769)×10^{-4}=2.948×10^{-4}J U a = ( 1.179 + 1.769 ) × 1 0 − 4 = 2.948 × 1 0 − 4 J
After moving to b;
Distance between the 32nC is;
r = 1 0 2 + 7 2 = 0.122 m r=\sqrt{10^2+7^2}=0.122m r = 1 0 2 + 7 2 = 0.122 m
Potential energy becomes;
U = 8.99 × 1 0 9 × 41 × 32 × 1 0 − 18 0.122 = 0.9667 × 1 0 − 5 J U=\frac{8.99×10^9×41×32×10^{-18}}{0.122}=0.9667×10^{-5}J U = 0.122 8.99 × 1 0 9 × 41 × 32 × 1 0 − 18 = 0.9667 × 1 0 − 5 J
Distance between the 25nC becomes;
r = 5 2 + 7 2 = 0.0862 r=\sqrt{5^2+7^2}=0.0862 r = 5 2 + 7 2 = 0.0862
Potential energy becomes;
U = 8.99 × 24 × 41 × 1 0 − 18 0.0862 = 1.0262 × 1 0 − 4 J U=\frac{8.99×24×41×10^{-18}}{0.0862}=1.0262×10^{-4}J U = 0.0862 8.99 × 24 × 41 × 1 0 − 18 = 1.0262 × 1 0 − 4 J
Total potential energy at point b is;
U b = ( 1.0262 + 0.9667 ) × 1 0 − 4 = 1.9929 × 1 0 − 4 J U_b=(1.0262+0.9667)×10^{-4}=1.9929×10^{-4}J U b = ( 1.0262 + 0.9667 ) × 1 0 − 4 = 1.9929 × 1 0 − 4 J J
The difference in potential difference is;
Δ U = U a − U b \Delta U=U_a-U_b Δ U = U a − U b
Δ U = 2.984 − 1.9924 = 0.9911 × 1 0 − 4 J \Delta U=2.984-1.9924=0.9911×10^{-4}J Δ U = 2.984 − 1.9924 = 0.9911 × 1 0 − 4 J
Comments