Question #202166

An intravenous (IV) system is supplying saline solution to a patient at the rate of  0.120 cm 3 /sec  through a needle of radius  0.150 mm and length  2.50 cm. What pressure  is needed at the entrance of the needle to cause this flow, assuming the viscosity of the saline solution is  0.001 Pa · sec? The gauge pressure of the blood in the patient’s vein is         8.00 mm Hg.


1
Expert's answer
2021-06-02T09:37:19-0400

Rate of flow, V=0.12  cm3=0.12×106  m3V = 0.12\; cm^3 = 0.12 \times 10^{-6}\; m^3

radius, r =0.15 mm =0.15×103  m=0.15 \times 10^{-3}\; m

length, L =2.5 cm =2.5×102  m= 2.5 \times 10^{-2} \;m

viscosity =8.9×104  Pas= 8.9 \times 10^{-4}\; Pa s

gauge pressure = 8 mm of Hg

The pressure is given by

V=πpr48ηL0.12×106=3.14×p×(0.15×103)48×8.9×104×2.5×102p=13437.1  PaV=\frac{\pi pr^4}{8 η L}\\ 0.12 \times 10^{-6}= \frac{3.14 \times p \times (0.15 \times 10^{-3})^4}{8 \times 8.9 \times 10^{-4} \times 2.5 \times 10^{-2}} \\ p = 13437.1 \;Pa

Pressure required

P= p + 8 mm of Hg

=13437.1+0.008×13.6×1000×9.8=14503.34  Pa= 13437.1 + 0.008 \times 13.6 \times 1000 \times 9.8 = 14503.34 \;Pa

Answer: 14503.34 Pa


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS