Let: q1 = +a μC , at the origin q2 = +b μC , b meters to the right of the origin q3 = -ab μC , a meters above q2 q4 = -b/a μC ,
a meters above the origin where: a = number of letters in your family name b = number of letters in your given name.
Find the magnitude and direction of the total electric force and total electric field at q3
Let a = 4
b = 2
Charges are,
"q_1=4\\space\\mu C=4\\times10^{-6}\\space C"
"q_2=2\\space\\mu C=2\\times10^{-6}\\space C"
"q_3=-8\\space\\mu C=-8\\times10^{-6}\\space C"
"q_4=-0.5\\space\\mu C=-0.5\\times10^{-6}\\space C"
Distance between "q_2" and "q_3,r_{23}=4\\space m"
Distance between "q_1" and "q_3,r_{13}=\\sqrt{b^2+a^2}=\\sqrt{16+4}=4.47\\space m"
Distance between "q_4" and "q_3,r_{43}=2\\space m"
Electrostatic Force between "q_1" and "q_3,\\space F_{13}=\\dfrac{kq_1q_3}{r_{13}^2}"
"F_{13}=\\dfrac{(9\\times10^9)\\space(4\\times10^{-6})(8\\times10^{-6})}{20}=0.0144\\space N"
Electrostatic Force between "q_2" and "q_3,\\space F_{23}=\\dfrac{kq_2q_3}{r_{23}^2}"
"F_{23}=\\dfrac{(9\\times10^9)\\space(2\\times10^{-6})(8\\times10^{-6})}{16}=0.009\\space N"
Electrostatic Force between "q_4" and "q_3,\\space F_{43}=\\dfrac{kq_4q_3}{r_{43}^2}"
"F_{43}=\\dfrac{(9\\times10^9)\\space(0.5\\times10^{-6})(8\\times10^{-6})}{4}=0.009\\space N"
Resultant of F43 and F23 = "\\sqrt{F_{43}^2+F_{23}^2}=0.01272\\space N"
Resultant of F13 with Resultant of F43 and F23 "=\\sqrt{F_{13}^2+(0.01272)^2-2F_{13}(0.01272)cos71.56\\degree}=0.0159\\space N"
Electric Field due to "q_1=\\dfrac{kq_1}{r_{13}^2}=1800\\space N\/C"
Electric Field due to "q_2=\\dfrac{kq_2}{r_{23}^2}=1125\\space N\/C"
Electric Field due to "q_4=\\dfrac{kq_4}{r_{43}^2}=1125 \\space N\/C"
Resultant of "E_{q_2}" and "E_{q_4}=1590.99\\space N\/C"
Resultant of "E_{q_1}" with resultant of "E_{q_2}\\space and\\space E_{q_4}=1989.86\\space N\/C"
Comments
Leave a comment