Answer to Question #194335 in Electric Circuits for Cool

Question #194335

Let: q1 = +a μC , at the origin q2 = +b μC , b meters to the right of the origin q3 = -ab μC , a meters above q2 q4 = -b/a μC ,

a meters above the origin where: a = number of letters in your family name b = number of letters in your given name.

Find the magnitude and direction of the total electric force and total electric field at q3


1
Expert's answer
2021-05-17T16:25:09-0400

Let a = 4

b = 2

Charges are,

q1=4 μC=4×106 Cq_1=4\space\mu C=4\times10^{-6}\space C

q2=2 μC=2×106 Cq_2=2\space\mu C=2\times10^{-6}\space C

q3=8 μC=8×106 Cq_3=-8\space\mu C=-8\times10^{-6}\space C

q4=0.5 μC=0.5×106 Cq_4=-0.5\space\mu C=-0.5\times10^{-6}\space C

Distance between q2q_2 and q3,r23=4 mq_3,r_{23}=4\space m

Distance between q1q_1 and q3,r13=b2+a2=16+4=4.47 mq_3,r_{13}=\sqrt{b^2+a^2}=\sqrt{16+4}=4.47\space m

Distance between q4q_4 and q3,r43=2 mq_3,r_{43}=2\space m

Electrostatic Force between q1q_1 and q3, F13=kq1q3r132q_3,\space F_{13}=\dfrac{kq_1q_3}{r_{13}^2}

F13=(9×109) (4×106)(8×106)20=0.0144 NF_{13}=\dfrac{(9\times10^9)\space(4\times10^{-6})(8\times10^{-6})}{20}=0.0144\space N

Electrostatic Force between q2q_2 and q3, F23=kq2q3r232q_3,\space F_{23}=\dfrac{kq_2q_3}{r_{23}^2}

F23=(9×109) (2×106)(8×106)16=0.009 NF_{23}=\dfrac{(9\times10^9)\space(2\times10^{-6})(8\times10^{-6})}{16}=0.009\space N

Electrostatic Force between q4q_4 and q3, F43=kq4q3r432q_3,\space F_{43}=\dfrac{kq_4q_3}{r_{43}^2}

F43=(9×109) (0.5×106)(8×106)4=0.009 NF_{43}=\dfrac{(9\times10^9)\space(0.5\times10^{-6})(8\times10^{-6})}{4}=0.009\space N



Resultant of F43 and F23 = F432+F232=0.01272 N\sqrt{F_{43}^2+F_{23}^2}=0.01272\space N

Resultant of F13 with Resultant of F43 and F23 =F132+(0.01272)22F13(0.01272)cos71.56°=0.0159 N=\sqrt{F_{13}^2+(0.01272)^2-2F_{13}(0.01272)cos71.56\degree}=0.0159\space N


Electric Field due to q1=kq1r132=1800 N/Cq_1=\dfrac{kq_1}{r_{13}^2}=1800\space N/C

Electric Field due to q2=kq2r232=1125 N/Cq_2=\dfrac{kq_2}{r_{23}^2}=1125\space N/C

Electric Field due to q4=kq4r432=1125 N/Cq_4=\dfrac{kq_4}{r_{43}^2}=1125 \space N/C

Resultant of Eq2E_{q_2} and Eq4=1590.99 N/CE_{q_4}=1590.99\space N/C

Resultant of Eq1E_{q_1} with resultant of Eq2 and Eq4=1989.86 N/CE_{q_2}\space and\space E_{q_4}=1989.86\space N/C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment