A square current loop is placed in a uniform magnetic field of magnitude 0.65 T directed into the page. The loop’s side length changes from 20.0 cm to 6.0 cm in 0.50 s.
(a) What is the magnitude of the induced emf?
(b) If the loop has a resistance of 2.5 Ω, then what is the magnitude of the induced current?
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small E&=\\small \\frac{d(A\\times\\vec{B})}{dt}\\cdots\\cdots(\\phi=area\\times perpendicular field)\\\\\n&=\\small \\vec{B}\\cdot\\frac{dA}{dt}\\cdots\\cdots(\\because the\\, field\\,is\\,a\\,constant)\\\\\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small A_1&=\\small (0.2m )^2=0.04m^2\\\\\n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small A_2&=\\small (0.06\\,m)^2=0.0036\\,m^2\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\Delta A&=\\small 0.0364\\,m^2\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{dA}{dt}&=\\small \\frac{0.0364m^2}{0.50\\,s}\\\\\n&=\\small 0.0728\\,m^2s^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small E&=\\small 0.65T\\times0.0728 m^2s^{-1}\\\\\n&=\\small \\bold{0.047\\,V}\n\\end{aligned}"
2)
"\\qquad\\qquad\n\\begin{aligned}\n\\small i&=\\small \\frac{E}{R}=\\frac{0.047V}{2.5\\Omega}\\\\\n&=\\small \\bold{0.019 A\\,(19\\,mA)}\n\\end{aligned}"
Comments
Leave a comment