Question #186792

1. A 35 𝜇𝐶 point charge is placed 32 𝑐𝑚 from an identical 32 𝜇𝐶 charge. How much work would be required to move a 0.50 𝜇𝐶 charge from a point midway between them to a point 12 𝑐𝑚 closer to either of the charges?

2. Three charges are at the vertices of an isosceles triangle. With 𝑞=7.00 𝑛𝐶, the two charges at the base of the triangle are separated by 2.00 𝑐𝑚 and each have a charge of −𝑞. The charge q at the top of the triangle is 4.00 𝑐𝑚 from each of the charges at the base. Calculate the electric potential halfway between the charges on the base of the triangle.

3. (a) Show that the capacitance of a parallel-plate capacitor is given by the equation

C=EA/D

(b) A 1-megabit computer memory chip contains many 60.0×10−15 𝐹 capacitors. Each capacitor has a plate area of 21.0×10−12 𝑚2. Determine the plate separation of such a capacitor. (Assume a parallel-plate configuration.) The diameter of atom is on the order of 10−10 𝑚 = 1 ˚ 𝐴. Express the plate separation in angstroms.


1
Expert's answer
2021-04-29T10:41:52-0400

(1) q1=q2=q=35μCq_1=q_2=q=35\mu C

q3=0.50μCq_3=0.50\mu C

Work Done =qV=q3(VbVa)=qV=q_3(V_b-V_a)

(0.50μC)(k×35μC)[(10.04 m+10.28 m)(10.16 m+10.16 m)](0.50\mu C)(k\times35\mu C)\Bigg[\left(\dfrac{1}{0.04\space m}+\dfrac{1}{0.28\space m}\right)-\left(\dfrac{1}{0.16\space m}+\dfrac{1}{0.16\space m}\right)\Bigg]

=2.53 J=2.53\space J


(2) V1=kqr1=9×109×7×10915×102=1626.65 VV_1=\dfrac{kq}{r_1}=\dfrac{9\times10^9\times7\times10^{-9}}{\sqrt{15}\times10^{-2}}=1626.65\space V

V2=k(q)r2=9×109×(7)×1091×102=6300 VV_2=\dfrac{k(-q)}{r_2}=\dfrac{9\times10^9\times(-7)\times10^{-9}}{{1}\times10^{-2}}=-6300\space V

V3=k(q)r3=9×109×(7)×1091×102=6300 VV_3=\dfrac{k(-q)}{r_3}=\dfrac{9\times10^9\times(-7)\times10^{-9}}{{1}\times10^{-2}}=-6300\space V

V=V1+V2+V3=10973.35 V\sum V=V_1+V_2+V_3=-10973.35\space V


(3)


The flux through the curved part outside the plates is also zero as the direction of the field E is parallel to this surface. The flux through ΔA\Delta A is

Φ=E.ΔA=EΔA\Phi=\vec{E}.\Delta \vec A=E\Delta A

The only charge inside the Gaussian surface is

ΔQ=σΔA=QAΔA\Delta Q=\sigma\Delta A=\dfrac{Q}{A}\Delta A


From Gauss’s law,

E.dS=Qinϵo\oint\vec E.d\vec S=\dfrac{Q_{in}}{\epsilon_o}

EΔA=QϵoAΔAE\Delta A=\dfrac{Q}{\epsilon_oA}\Delta A

E=QϵoAE=\dfrac{Q}{\epsilon_o A}


The potential difference between the plates is

V=V+V=ABE.drV=V_+-V_-=-\int_{A}^{B} \vec E \,.d\vec r

V=ABEdrV=\int_A^BEdr

V=Ed=QdϵoAV=Ed=\dfrac{Qd}{\epsilon_o A}


The capacitance of the parallel-plate capacitor is

C=QV=QϵoAQdC=\dfrac{Q}{V}=\dfrac{Q\epsilon_o A}{Qd}

C=ϵoAdC=\dfrac{\epsilon_o A}{d}


(b) C=60×1015 FC=60\times10^{-15}\space F

Area, A=21×1012 m2A=21\times10^{-12}\space m^2

d=ϵoAC=8.85×1012×21×101260×1015d=\dfrac{\epsilon_o A}{C}=\dfrac{8.85\times10^{-12}\times21\times10^{-12}}{60\times10^{-15}}

d=3.0975×109 m=30.975 Aod=3.0975\times10^{-9}\space m=30.975\space A^o


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Evidence mukosha
20.05.23, 03:54

Thank you so much Continue help us

Fusani Chileshe
16.06.22, 15:05

Very helpful... Thank you

LATEST TUTORIALS
APPROVED BY CLIENTS