Given,
q 1 = 1.5 ΞΌ C q_1=1.5\mu C q 1 β = 1.5 ΞΌ C
q 2 = 5 ΞΌ C q_2=5\mu C q 2 β = 5 ΞΌ C
q 3 = β 3 ΞΌ C q_3=-3\mu C q 3 β = β 3 ΞΌ C
(π₯1 ,π¦1 ,π§1 )=(1,β2,4) π,
r 1 = i ^ β 2 j ^ + 4 k ^ r_1=\hat{i}-2\hat{j}+4\hat{k} r 1 β = i ^ β 2 j ^ β + 4 k ^
(π₯2 ,π¦2 ,π§2 )=(2,-1, 3) π,
r 2 = 2 i ^ β j ^ + 3 k ^ r_2=2\hat{i}-\hat{j}+3\hat{k} r 2 β = 2 i ^ β j ^ β + 3 k ^
And (π₯3 ,π¦3 ,π§3 )=(3, 3, -4) π
r 3 = 3 i ^ + 3 j ^ β 4 k ^ r_3=3\hat{i}+3\hat{j}-4\hat{k} r 3 β = 3 i ^ + 3 j ^ β β 4 k ^
d 12 = ( 2 β 1 ) 2 + ( β 1 + 2 ) 2 + ( 3 β 4 ) 2 = 1 + 1 + 1 = 3 d_{12}=\sqrt{(2-1)^2+(-1+2)^2+(3-4)^2}=\sqrt{1+1+1}=\sqrt{3} d 12 β = ( 2 β 1 ) 2 + ( β 1 + 2 ) 2 + ( 3 β 4 ) 2 β = 1 + 1 + 1 β = 3 β
d 12 β = i ^ + j ^ β k ^ \overrightarrow{d_{12}}=\hat{i}+\hat{j}-\hat{k} d 12 β β = i ^ + j ^ β β k ^
d 13 = ( 3 β 1 ) 2 + ( 3 + 2 ) 2 + ( β 4 β 4 ) 2 = 4 + 25 + 64 = 93 d_{13}=\sqrt{(3-1)^2+(3+2)^2+(-4-4)^2}=\sqrt{4+25+64}=\sqrt{93} d 13 β = ( 3 β 1 ) 2 + ( 3 + 2 ) 2 + ( β 4 β 4 ) 2 β = 4 + 25 + 64 β = 93 β
d 13 β = 2 i ^ + 5 j ^ β 8 k ^ \overrightarrow{d_{13}}=2\hat{i}+5\hat{j}-8\hat{k} d 13 β β = 2 i ^ + 5 j ^ β β 8 k ^
d 23 = 1 + 4 2 + 8 2 = 81 = 9 d_{23}=\sqrt{1+4^2+8^2}=\sqrt{81}=9 d 23 β = 1 + 4 2 + 8 2 β = 81 β = 9
d 23 β = i ^ + 4 j ^ β 8 k ^ \overrightarrow{d_{23}}=\hat{i}+4\hat{j}-8\hat{k} d 23 β β = i ^ + 4 j ^ β β 8 k ^
Hence, the required force F 12 = 9 Γ 1 0 9 Γ 1.5 Γ 1 0 β 6 Γ 5 Γ 1 0 β 6 3 i ^ + j ^ β k ^ 3 F_{12}=\frac{9\times 10^{9}\times 1.5\times 10^{-6}\times 5\times 10^{-6}}{3}\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}} F 12 β = 3 9 Γ 1 0 9 Γ 1.5 Γ 1 0 β 6 Γ 5 Γ 1 0 β 6 β 3 β i ^ + j ^ β β k ^ β N
= 7.5 3 Γ 1 0 β 3 ( i ^ + j ^ β k ^ ) N =7.5\sqrt{3}\times 10^{-3}(\hat{i}+\hat{j}-\hat{k})N = 7.5 3 β Γ 1 0 β 3 ( i ^ + j ^ β β k ^ ) N
F 13 = β 9 Γ 1 0 9 Γ 1.5 Γ 3 Γ 1 0 β 12 93 2 i ^ + 5 j ^ β 8 k ^ 93 F_{13}=-\frac{9\times 10^{9}\times 1.5\times 3\times 10^{-12}}{93}\frac{2\hat{i}+5\hat{j}-8\hat{k}}{\sqrt{93}} F 13 β = β 93 9 Γ 1 0 9 Γ 1.5 Γ 3 Γ 1 0 β 12 β 93 β 2 i ^ + 5 j ^ β β 8 k ^ β
= β 0.044 Γ 1 0 β 3 ( 2 i ^ + 5 j ^ β 8 k ^ ) =-0.044\times 10^{-3}(2\hat{i}+5\hat{j}-8\hat{k}) = β 0.044 Γ 1 0 β 3 ( 2 i ^ + 5 j ^ β β 8 k ^ )
F n e t = F 12 + F 13 = 7.5 3 Γ 1 0 β 3 ( i ^ + j ^ β k ^ ) β 0.044 Γ 1 0 β 3 ( 2 i ^ + 5 j ^ β 8 k ^ ) F_{net}=F_{12}+F_{13}=7.5\sqrt{3}\times 10^{-3}(\hat{i}+\hat{j}-\hat{k})-0.044\times 10^{-3}(2\hat{i}+5\hat{j}-8\hat{k}) F n e t β = F 12 β + F 13 β = 7.5 3 β Γ 1 0 β 3 ( i ^ + j ^ β β k ^ ) β 0.044 Γ 1 0 β 3 ( 2 i ^ + 5 j ^ β β 8 k ^ )
= 12.9 i ^ + 12.77 j ^ β 12.63 k ^ =12.9\hat{i}+12.77\hat{j}-12.63\hat{k} = 12.9 i ^ + 12.77 j ^ β β 12.63 k ^
F 23 = 9 Γ 15 Γ 10 β 3 81 i ^ + 4 j ^ β 8 k ^ 9 F_{23}=\frac{9\times 15\times 10{-3}}{81}\frac{\hat{i}+4\hat{j}-8\hat{k}}{9} F 23 β = 81 9 Γ 15 Γ 10 β 3 β 9 i ^ + 4 j ^ β β 8 k ^ β
Comments