Question #173178

Consider three charges π‘ž1=1.5 πœ‡πΆ, π‘ž2 =5πœ‡πΆ, and π‘ž3=-3 πœ‡πΆ located at (π‘₯1,𝑦1,𝑧1)=(1,βˆ’2,4) π‘š, (π‘₯2,𝑦2,𝑧2)=(2,-1, 3) π‘š, and (π‘₯3,𝑦3,𝑧3)=(3, 3, -4) π‘š, respectively. Find the total net force F

βƒ— 

1

Fβ†’1 on charge π‘ždue to electric fields E

βƒ— 

2

Eβ†’2 (induce by π‘ž2) and E

βƒ— 

3

Eβ†’3 (induce by π‘ž3) . Note that by superposition of vectors:


1
Expert's answer
2021-03-21T11:31:05-0400

Given,

q1=1.5ΞΌCq_1=1.5\mu C

q2=5ΞΌCq_2=5\mu C

q3=βˆ’3ΞΌCq_3=-3\mu C

(π‘₯1,𝑦1,𝑧1)=(1,βˆ’2,4) π‘š,

r1=i^βˆ’2j^+4k^r_1=\hat{i}-2\hat{j}+4\hat{k}

(π‘₯2,𝑦2,𝑧2)=(2,-1, 3) π‘š,

r2=2i^βˆ’j^+3k^r_2=2\hat{i}-\hat{j}+3\hat{k}


And (π‘₯3,𝑦3,𝑧3)=(3, 3, -4) π‘š

r3=3i^+3j^βˆ’4k^r_3=3\hat{i}+3\hat{j}-4\hat{k}

d12=(2βˆ’1)2+(βˆ’1+2)2+(3βˆ’4)2=1+1+1=3d_{12}=\sqrt{(2-1)^2+(-1+2)^2+(3-4)^2}=\sqrt{1+1+1}=\sqrt{3}

d12β†’=i^+j^βˆ’k^\overrightarrow{d_{12}}=\hat{i}+\hat{j}-\hat{k}


d13=(3βˆ’1)2+(3+2)2+(βˆ’4βˆ’4)2=4+25+64=93d_{13}=\sqrt{(3-1)^2+(3+2)^2+(-4-4)^2}=\sqrt{4+25+64}=\sqrt{93}

d13β†’=2i^+5j^βˆ’8k^\overrightarrow{d_{13}}=2\hat{i}+5\hat{j}-8\hat{k}


d23=1+42+82=81=9d_{23}=\sqrt{1+4^2+8^2}=\sqrt{81}=9

d23β†’=i^+4j^βˆ’8k^\overrightarrow{d_{23}}=\hat{i}+4\hat{j}-8\hat{k}

Hence, the required force F12=9Γ—109Γ—1.5Γ—10βˆ’6Γ—5Γ—10βˆ’63i^+j^βˆ’k^3F_{12}=\frac{9\times 10^{9}\times 1.5\times 10^{-6}\times 5\times 10^{-6}}{3}\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}} N

=7.53Γ—10βˆ’3(i^+j^βˆ’k^)N=7.5\sqrt{3}\times 10^{-3}(\hat{i}+\hat{j}-\hat{k})N


F13=βˆ’9Γ—109Γ—1.5Γ—3Γ—10βˆ’12932i^+5j^βˆ’8k^93F_{13}=-\frac{9\times 10^{9}\times 1.5\times 3\times 10^{-12}}{93}\frac{2\hat{i}+5\hat{j}-8\hat{k}}{\sqrt{93}}

=βˆ’0.044Γ—10βˆ’3(2i^+5j^βˆ’8k^)=-0.044\times 10^{-3}(2\hat{i}+5\hat{j}-8\hat{k})

Fnet=F12+F13=7.53Γ—10βˆ’3(i^+j^βˆ’k^)βˆ’0.044Γ—10βˆ’3(2i^+5j^βˆ’8k^)F_{net}=F_{12}+F_{13}=7.5\sqrt{3}\times 10^{-3}(\hat{i}+\hat{j}-\hat{k})-0.044\times 10^{-3}(2\hat{i}+5\hat{j}-8\hat{k})

=12.9i^+12.77j^βˆ’12.63k^=12.9\hat{i}+12.77\hat{j}-12.63\hat{k}

F23=9Γ—15Γ—10βˆ’381i^+4j^βˆ’8k^9F_{23}=\frac{9\times 15\times 10{-3}}{81}\frac{\hat{i}+4\hat{j}-8\hat{k}}{9}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS