Consider three charges ๐1=1.5 ๐๐ถ, ๐2ย =5๐๐ถ, and ๐3=-3 ๐๐ถ located at (๐ฅ1,๐ฆ1,๐ง1)=(1,โ2,4) ๐, (๐ฅ2,๐ฆ2,๐ง2)=(2,-1, 3) ๐, andย (๐ฅ3,๐ฆ3,๐ง3)=(3, 3, -4) ๐, respectively. Find the total net forceย F
โย
1
Fโ1ย on charge ๐1ย due to electric fieldsย E
โย
2
Eโ2ย (induce by ๐2)ย andย E
โย
3
Eโ3ย (induce by ๐3) . Note that by superposition of vectors:
Given,
"q_1=1.5\\mu C"
"q_2=5\\mu C"
"q_3=-3\\mu C"
(๐ฅ1,๐ฆ1,๐ง1)=(1,โ2,4) ๐,
"r_1=\\hat{i}-2\\hat{j}+4\\hat{k}"
(๐ฅ2,๐ฆ2,๐ง2)=(2,-1, 3) ๐,
"r_2=2\\hat{i}-\\hat{j}+3\\hat{k}"
Andย (๐ฅ3,๐ฆ3,๐ง3)=(3, 3, -4) ๐
"r_3=3\\hat{i}+3\\hat{j}-4\\hat{k}"
"d_{12}=\\sqrt{(2-1)^2+(-1+2)^2+(3-4)^2}=\\sqrt{1+1+1}=\\sqrt{3}"
"\\overrightarrow{d_{12}}=\\hat{i}+\\hat{j}-\\hat{k}"
"d_{13}=\\sqrt{(3-1)^2+(3+2)^2+(-4-4)^2}=\\sqrt{4+25+64}=\\sqrt{93}"
"\\overrightarrow{d_{13}}=2\\hat{i}+5\\hat{j}-8\\hat{k}"
"d_{23}=\\sqrt{1+4^2+8^2}=\\sqrt{81}=9"
"\\overrightarrow{d_{23}}=\\hat{i}+4\\hat{j}-8\\hat{k}"
Hence, the required force "F_{12}=\\frac{9\\times 10^{9}\\times 1.5\\times 10^{-6}\\times 5\\times 10^{-6}}{3}\\frac{\\hat{i}+\\hat{j}-\\hat{k}}{\\sqrt{3}}" N
"=7.5\\sqrt{3}\\times 10^{-3}(\\hat{i}+\\hat{j}-\\hat{k})N"
"F_{13}=-\\frac{9\\times 10^{9}\\times 1.5\\times 3\\times 10^{-12}}{93}\\frac{2\\hat{i}+5\\hat{j}-8\\hat{k}}{\\sqrt{93}}"
"=-0.044\\times 10^{-3}(2\\hat{i}+5\\hat{j}-8\\hat{k})"
"F_{net}=F_{12}+F_{13}=7.5\\sqrt{3}\\times 10^{-3}(\\hat{i}+\\hat{j}-\\hat{k})-0.044\\times 10^{-3}(2\\hat{i}+5\\hat{j}-8\\hat{k})"
"=12.9\\hat{i}+12.77\\hat{j}-12.63\\hat{k}"
"F_{23}=\\frac{9\\times 15\\times 10{-3}}{81}\\frac{\\hat{i}+4\\hat{j}-8\\hat{k}}{9}"
Comments
Leave a comment