Draw the phasor diagram and find the sum of the currents: i1=141.42Sin(ωt + π/2) , i2 = -70.71 Cos ωt , i3= 50 ej π/3 , i4=100∠-2 π/3 and i5= 50 (Cosπ/3 + j Sinπ/3)
Given Currents are-
"I_1=141.42sin(\\omega t+\\dfrac{\\pi}{2})=141.42coswt"
"I_2=-70.71coswt"
"I_3=50e^{j\\frac{\\pi}{3}}=50(cos\\dfrac{\\pi}{3}+jsin\\dfrac{\\pi}{3})=50(\\dfrac{1+\\sqrt{3}j}{2})=25+25\\sqrt{3}j"
"I_4=100<\\dfrac{-2\\pi}{3}\\\\=-50-86.6j" ( convert the polar to rectangular form)
"I_5=50(cos\\dfrac{\\pi}{3}+jsin\\dfrac{\\pi}{3})=50(\\dfrac{1+\\sqrt{3}j}{2})=25+25\\sqrt{3}j"
Adding All the currents-
"I=I_1+I_2+I_3+I_4+I_5"
"=141.42cos\\omega t-70.71cos\\omega t+25+25\\sqrt{3}j-50-86.6j+25+25\\sqrt{3}j"
"=141.42cos\\omega t-70.71cos\\omega t+50+50\\times 1.732j-50-86.6j"
"=70.71cos\\omega t+86.6j-86.6j"
"=70.71cos\\omega t+0=70.71coswt=70.71sin(\\omega t+\\dfrac{\\pi}{2})"
Hence The sum of currents is 70.71"sin(\\omega t+\\dfrac{\\pi}{2})" .
Comments
Leave a comment