Question #167087

If the currents in the three parallel branches of an ac circuit are given as I1 = 25∠30°A, I2 = 25e-jΠ/6A and I3 = (50 + j 50)A, express the total current in the form

(i) I ∠Φ and

(ii) Im sin (ωt + Φ).


1
Expert's answer
2021-02-28T07:37:27-0500

I1=2530° A=25(cosπ6+jsinπ6)=(21.65+j12.5) AI_1=25\angle30\degree\space A=25(cos\dfrac{\pi}{6}+jsin\dfrac{\pi}{6})=(21.65+j12.5)\space A

I2=25ejπ/6 A=25(cosπ6+jsinπ6)=(21.65j12.5) AI_2=25e^{-j\pi/6}\space A=25(cos\dfrac{-\pi}{6}+jsin\dfrac{-\pi}{6})=(21.65-j12.5)\space A

I3=50+j50 AI_3=50+j50\space A


(a) I=I1+I2+I3I=I_1+I_2+I_3

I=(21.65+21.65+50)+j(12.512.5+50)\Rightarrow I=(21.65+21.65+50)+j(12.5-12.5+50)

I=93.3+j50\Rightarrow I=93.3+j50

Magnitude of I=(93.3)2+(50)2I=\sqrt{(93.3)^2+(50)^2}

                         =105.85\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=105.85

Position of II with respect to xx axis is θ=tan15093.3\theta=tan^{-1}\dfrac{50}{93.3}

                                                           =28.18°\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=28.18\degree

I=105.8528.18° AI=105.85\angle28.18\degree\space A


(b) Im=105.85 AI_m=105.85\space A

ϕ=28.18°\phi=28.18\degree

Assuming frequency of AC supply to be 50 Hz

ω=2πf=2π×50=314s1\omega=2\pi f=2\pi\times50=314s^{-1}

I=Im(ωt+ϕ)I=I_m(\omega t+\phi)

I=105.85sin(314t+28.18°) AI=105.85sin(314t+28.18\degree)\space A




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS