If the currents in the three parallel branches of an ac circuit are given as I1 = 25∠30°A, I2 = 25e-jΠ/6A and I3 = (50 + j 50)A, express the total current in the form
(i) I ∠Φ and
(ii) Im sin (ωt + Φ).
"I_1=25\\angle30\\degree\\space A=25(cos\\dfrac{\\pi}{6}+jsin\\dfrac{\\pi}{6})=(21.65+j12.5)\\space A"
"I_2=25e^{-j\\pi\/6}\\space A=25(cos\\dfrac{-\\pi}{6}+jsin\\dfrac{-\\pi}{6})=(21.65-j12.5)\\space A"
"I_3=50+j50\\space A"
(a) "I=I_1+I_2+I_3"
"\\Rightarrow I=(21.65+21.65+50)+j(12.5-12.5+50)"
"\\Rightarrow I=93.3+j50"
Magnitude of "I=\\sqrt{(93.3)^2+(50)^2}"
"\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space=105.85"
Position of "I" with respect to "x" axis is "\\theta=tan^{-1}\\dfrac{50}{93.3}"
"\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space=28.18\\degree"
"I=105.85\\angle28.18\\degree\\space A"
(b) "I_m=105.85\\space A"
"\\phi=28.18\\degree"
Assuming frequency of AC supply to be 50 Hz
"\\omega=2\\pi f=2\\pi\\times50=314s^{-1}"
"I=I_m(\\omega t+\\phi)"
"I=105.85sin(314t+28.18\\degree)\\space A"
Comments
Leave a comment