Draw the phasor diagram and find the sum of the currents: i1=141.42 Sin(t + /2) , i2 = -70.71 Cos t , i3= 50 ej/3 , i4=100 -2/3 and i5= 50 (Cos /3 + j Sin/3)
"i_1=14.42sin(wt+\\frac{\\pi}{2}); i_2=-70.71cos(wt); i_3=50e^{i\\pi\/3}"
"i_4=100 \\angle-2\\pi\/3 ; i_5=50(cos(\\frac{\\pi}{3})+isins(\\frac{\\pi}{3}))"
As "i(t)=1_msin(wt+\\phi)" can be written as "i(t)=\\frac{1_m}{\\sqrt{2}}\\angle\\phi \\implies rms \\space value"
"i_1=\\frac{141.42}{\\sqrt{2}} \\angle-\\pi\/2"
"i_2=\\frac{70.71}{\\sqrt{2}}\\angle-\\pi\/2"
The polar form of representation i(t) is "r.e^{i\\theta} \\implies r\\angle\\theta"
"i_3=50\\angle\\pi\/3"
"i_4=100\\angle-2\\pi\/3"
"i_5=50\\angle\\pi\/3"
With these values, the phasor diagram is as shown below
Sum of current, "i_T=i_1+i_2+i_3+i_4+i_5"
"i_T=100\\angle\\pi\/2+50\\angle-\\pi\/2+50\\angle\\pi\/3+100\\angle-2\\pi\/3+50\\angle\\pi\/3"
"i_T=50j+100(\\frac{1}{2}+j\\frac{\\sqrt{2}}{3})+100(-\\frac{1}{2}-j\\frac{\\sqrt{2}}{3})"
"i_T=50\\sqrt{2}sin(w+\\frac{\\pi}{2})"
Comments
Leave a comment