Question #159606
A fixed capacitor of capacitance 10^(-4) microfarad is connected in series with a variable capacitor, the capacitance of which may be varied from zero to 10^(-4) microfarad in steps of 10^(-6) microfarad. These two in series are connected in parallel with a third capacitor of capacitance 5 x10^(-4) microfarad. Calculate:
(i) the maximum capacitance of the whole combination.
(ii) the smallest change in this capacitance which can be produced by the arrangement.
1
Expert's answer
2021-02-23T16:03:16-0500

Let's write the equivalent capacitance of the whole combination of capacitors:


Ceq=C1C2(C1+C2)+C3.C_{eq}=\dfrac{C_1C_2}{(C_1+C_2)}+C_3.


(i) As we can see from the formula, the maximum capacitance of the whole combination will be when C2=104 μFC_2=10^{-4}\ \mu F:


Ceq=104 μF104 μF(104 μF+104 μF)+5104 μF=5.5 μF.C_{eq}=\dfrac{10^{-4}\ \mu F\cdot10^{-4}\ \mu F}{(10^{-4}\ \mu F+10^{-4}\ \mu F)}+5\cdot10^{-4}\ \mu F=5.5\ \mu F.

(ii) Let's substitute into CeqC_{eq} the capacitance of C2=106 μFC_2=10^{-6}\ \mu F (the smallest possible value):


Ceq,1=104 μF106 μF(104 μF+106 μF)+5104 μF=5.0099 μF.C_{eq,1}=\dfrac{10^{-4}\ \mu F\cdot10^{-6}\ \mu F}{(10^{-4}\ \mu F+10^{-6}\ \mu F)}+5\cdot10^{-4}\ \mu F=5.0099\ \mu F.


Then, let's change it by step (106 μF10^{-6}\ \mu F) and again substitute into the formula:


Ceq,2=104 μF2106 μF(104 μF+2106 μF)+5104 μF=5.0196 μF.C_{eq,2}=\dfrac{10^{-4}\ \mu F\cdot2\cdot10^{-6}\ \mu F}{(10^{-4}\ \mu F+2\cdot10^{-6}\ \mu F)}+5\cdot10^{-4}\ \mu F=5.0196\ \mu F.

Then, the smallest change in this capacitance which can be produced by the arrangement equals the difference between Ceq,2C_{eq,2} and Ceq,1C_{eq,1}:


ΔCeq=Ceq,2Ceq,1,\Delta C_{eq}=C_{eq,2}-C_{eq,1},ΔCeq=5.0196 μF5.0099 μF=9.7103 μF.\Delta C_{eq}=5.0196\ \mu F-5.0099\ \mu F=9.7\cdot10^{-3}\ \mu F.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS