Let's write the equivalent capacitance of the whole combination of capacitors:
"C_{eq}=\\dfrac{C_1C_2}{(C_1+C_2)}+C_3."
(i) As we can see from the formula, the maximum capacitance of the whole combination will be when "C_2=10^{-4}\\ \\mu F":
"C_{eq}=\\dfrac{10^{-4}\\ \\mu F\\cdot10^{-4}\\ \\mu F}{(10^{-4}\\ \\mu F+10^{-4}\\ \\mu F)}+5\\cdot10^{-4}\\ \\mu F=5.5\\ \\mu F."(ii) Let's substitute into "C_{eq}" the capacitance of "C_2=10^{-6}\\ \\mu F" (the smallest possible value):
"C_{eq,1}=\\dfrac{10^{-4}\\ \\mu F\\cdot10^{-6}\\ \\mu F}{(10^{-4}\\ \\mu F+10^{-6}\\ \\mu F)}+5\\cdot10^{-4}\\ \\mu F=5.0099\\ \\mu F."
Then, let's change it by step ("10^{-6}\\ \\mu F") and again substitute into the formula:
"C_{eq,2}=\\dfrac{10^{-4}\\ \\mu F\\cdot2\\cdot10^{-6}\\ \\mu F}{(10^{-4}\\ \\mu F+2\\cdot10^{-6}\\ \\mu F)}+5\\cdot10^{-4}\\ \\mu F=5.0196\\ \\mu F."Then, the smallest change in this capacitance which can be produced by the arrangement equals the difference between "C_{eq,2}" and "C_{eq,1}":
"\\Delta C_{eq}=C_{eq,2}-C_{eq,1},""\\Delta C_{eq}=5.0196\\ \\mu F-5.0099\\ \\mu F=9.7\\cdot10^{-3}\\ \\mu F."
Comments
Leave a comment