The young modulus formula is given by
"\\gamma=\\frac{\\textsf{Longitudinal stress}}{\\textsf{Longitudinal strain}}\\hspace{1cm}(1)"
Where "\\gamma" is the young modulus
"\\begin{aligned}\\textsf{Longitudinal stress}=\\frac{F}{A}\\hspace{1cm}&(2)\\\\\\textsf{Longitudinal strain}=\\frac{\u2206L}{L}\\hspace{0.9cm}&(3)\\end{aligned}" Where "F,A,\u2206L\\textsf{ and }L" represent the Force, Area, change in the length and the initial length respectively.
Substituting (2) and (3) in (1),
"\\gamma=\\frac{\\frac{F}{A}}{\\frac{\u2206L}{L}}\\\\\n\\gamma=\\frac{FL}{\u2206LA}\\\\\nA=\\frac{FL}{\\gamma\u2206L}"
Let "A_1" and "A_2" represent the cross sectional areas of the steel wire and steel cable respectively.
Let "F_1" and "F_2" represent the forces on the steel wire and steel cable respectively.
"A_1=\\frac{F_1L}{\\gamma\\Delta L}\\hspace{1cm}(4)\\\\\nA_2=\\frac{F_2L}{\\gamma\\Delta L}\\hspace{1cm}(5)"
Dividing (5) by (4)
"\\frac{A_2}{A_1}=\\frac{\\frac{F_2L}{\\gamma\\Delta L}}{\\frac{F_1L}{\\gamma\\Delta L}}\\\\\n\\frac{A_2}{A_1}=\\frac{F_2}{F_1}\\hspace{1.3cm}(6)\\\\"
"A_1=\\frac{\\Pi {D_1}\u00b2}{4}\\hspace{1cm}(7)\\\\\nA_2=\\frac{\\Pi{D_2}\u00b2}{4}\\hspace{1cm}(8)"
Where "D_1" and "D_2" represent the diameters of the steel cable and steel wire respectively.
Substituting (7) and (8) in (6),
"\\frac{\\frac{\\Pi{D_2}\u00b2}{4}}{\\frac{\\Pi {D_1}\u00b2}{4}}=\\frac{F_2}{F_1}"
"\\frac{{D_2}\u00b2}{{D_1}\u00b2}=\\frac{F_2}{F_1}\\\\\n{D_2}\u00b2={D_1}\u00b2\u00d7\\frac{F_2}{F_1}\\\\\n{D_2}\u00b2=(1\u00d710^{-3}m)\u00b2\u00d7(\\frac{20kN}{0.2kN})\\\\\n{D_2}\u00b2=(10^{-6}m\u00b2)\u00d7(100)\\\\\n{D_2}\u00b2=10^{-4}m\u00b2\\\\\nD_2=\\sqrt{10^{-4}m\u00b2}\\\\\nD_2=10^{-2}m\\\\\nD_2=10mm"
Comments
Thanks for your help!
Leave a comment