As the height of liquid rise in a capillary is equal to: "h=\\frac{2\\times \u03c3\\times \\cos \\theta}{p\\times g\\times R}" , where: "\u03c3" -surface tension coefficient, "p" is the fluid density, "g" -acceleration of free fall, "R" is the radius of the capillary.
Then: "R= \\frac{p\\times g\\times h} {2\\times \u03c3\\times \\cos \\theta }= \\frac{10^3\\times 10\\times 0.062} {2\\times 0.7\\times \\cos 0 }\\approx442.86" m.
Hence the height at mercury: "h=\\frac{2\\times \u03c3\\times \\cos \\theta}{p\\times g\\times R}=" "\\frac{2\\times 0.54\\times \\cos {(180\\degree-140\\degree)}}{13600\\times 10\\times 442.86}\\approx1. 37\\times 10^{-8}" m.
Comments
Leave a comment