Given expression for Potential is,
"U=\\dfrac{A}{r^{12}}-\\dfrac{B}{r^6}~~~~~~-(1)"
(a) When the energy is minimum ,it means the system is in equlibrium
Differentiate equation 1 with respect to r
"\\to \\dfrac{dU}{dr}=\\dfrac{-12A}{r^{13}}+\\dfrac{6B}{r^7}"
For energy minimum "\\dfrac{du}{dr}=0"
"\\therefore \\dfrac{12A}{r^{13}}=\\dfrac{6B}{r^7}"
"\\to r^6=\\dfrac{2A}{B}"
"\\to r^6=\\dfrac{2\\times0.124\\times 10^{12}}{1.488\\times 10^{-60}}"
"\\to r^6=\\dfrac{0.248\\times10^{72}}{1.488\\times 10^{-60}}"
"\\to r^6=0.16\\times 10^{72}"
so r="(0.16\\times 10^{72})^{\\frac{1}{6}}" m
(b) Energy required to brake "H_2" molecule is
"\\to U=\\frac{0.124\\times 10^{12}}{0.16\\times10^{72}}-\\frac{1.488\\times 10^{-60}}{0.16\\times10^{72}}"
=0.775-9.3"\\times 10^{-132}" Joule
Comments
Leave a comment