Heat energy dissipated H=∫0t E2RdtH=\int_0^{t}\space\frac{E^2}{R}dtH=∫0t RE2dt
where t=10−3t=10^{-3}t=10−3, E=Erms=E0sinωtE=E_{rms}=E_0sin\omega tE=Erms=E0sinωt ,
Therefore
∫0t (12sinωt)2100dt\int_0^{t}\space \frac{(12sin\omega t)^{2}}{100}dt∫0t 100(12sinωt)2dt
144100∫0t (1−cos2×250πt)2dt\frac{144}{100}\int_0^{t}\space\frac{(1-cos2\times250\pi t)}{2}dt100144∫0t 2(1−cos2×250πt)dt
144200[1−sin500πt500π]0t\frac{144}{200}[1-\frac{sin500\pi t}{500\pi}]_0^t200144[1−500πsin500πt]0t
At t=10−3t=10^{-3}t=10−3
Energy dissipated =144200[10−3−1500π]\frac{144}{200}[10^{-3}-\frac{1}{500\pi}]200144[10−3−500π1]
Heat Energy= 2.61×10−4J2.61\times10^{-4}J2.61×10−4J
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments