Heat energy dissipated "H=\\int_0^{t}\\space\\frac{E^2}{R}dt"
where "t=10^{-3}", "E=E_{rms}=E_0sin\\omega t" ,
Therefore
"\\int_0^{t}\\space \\frac{(12sin\\omega t)^{2}}{100}dt"
"\\frac{144}{100}\\int_0^{t}\\space\\frac{(1-cos2\\times250\\pi t)}{2}dt"
"\\frac{144}{200}[1-\\frac{sin500\\pi t}{500\\pi}]_0^t"
At "t=10^{-3}"
Energy dissipated ="\\frac{144}{200}[10^{-3}-\\frac{1}{500\\pi}]"
Heat Energy= "2.61\\times10^{-4}J"
Comments
Leave a comment