G i v e n f 1 0 = 48 H z C 1 = 32 m F C 2 = 128 m F f 2 0 − ? S o l u t i o n : f 1 0 = 1 2 π L C ; L = 1 4 π 2 f 1 0 2 C = 1 39.438 × 4 8 2 × 32 × 1 0 − 6 = 0.344 H ; f 2 0 = 1 2 π L C = 1 2 × 3.14 0.344 × 128 × 1 0 − 6 = 24 H z ; T h i s t a s k c a n b e s o l v e d m o r e e a s i l y : C 2 C 1 = 2 ; f 1 0 2 = 48 2 = 24 H z ; A n s w e r : t h e r e s o n a n t f r e q u e n c y w i l l b e 24 H z Given\\f_{1_0}=48 Hz\\C_1=32mF\\C_2=128mF\\f_{2_0}-?\\Solution:\\f_{1_0}=\frac{1}{2\pi\sqrt{LC}}; \\L=\frac{1}{4\pi^2 f_{1_0}^2C}=\frac{1}{39.438\times 48^2 \times 32\times 10^{-6}}=0.344H; \\f_{2_0}=\frac{1}{2\pi\sqrt{LC}}=\frac{1}{2\times 3.14\sqrt{0.344\times128\times10^{-6}}}=24 Hz; \\This \;task \;can\; be \;solved\; more\; easily:\\\sqrt\frac{C_2}{C_1} =2;\;\frac{f_{1_0}}{2}=\frac{48}{2}=24Hz;\\Answer: the\; resonant\; frequency\; will\; be \;24Hz G i v e n f 1 0 = 48 Hz C 1 = 32 m F C 2 = 128 m F f 2 0 − ? S o l u t i o n : f 1 0 = 2 π L C 1 ; L = 4 π 2 f 1 0 2 C 1 = 39.438 × 4 8 2 × 32 × 1 0 − 6 1 = 0.344 H ; f 2 0 = 2 π L C 1 = 2 × 3.14 0.344 × 128 × 1 0 − 6 1 = 24 Hz ; T hi s t a s k c an b e so l v e d m ore e a s i l y : C 1 C 2 = 2 ; 2 f 1 0 = 2 48 = 24 Hz ; A n s w er : t h e reso nan t f re q u e n cy w i ll b e 24 Hz
Comments