Determine whether the following force field F is conservative: F=xi-yj+zk
The force field is conservative if and only if the curl of the force is equal to zero.
By definition, the curl is:
∇×F=∣∣^∂x∂Fx^∂y∂Fyk^∂z∂Fz∣∣=(∂y∂Fz−∂z∂Fy)^+(∂z∂Fx−∂x∂Fz)^+(∂x∂Fy−∂y∂Fx)k^ .
Substitute the values of the derivatives into the last expression:
∇×F=(∂y∂z−∂z∂(−y))^+(∂z∂x−∂x∂z)^+(∂x∂(−y)−∂y∂x)k^==(0−0)^+(0−0)^+(0−0)k^=0
Thus, the force field is conservative. QED.
Comments