Question #95285
In a soccer game a midfielder kicks the ball from one touchline directly toward the other with a velocity of 14.0 m/s (along the positive x-axis). After the ball travels for 2.50 s, a striker makes an acrobatic kick that gives the ball a new velocity in the y direction, and after 0.900 s the ball passes the diving goalkeeper and goes into the net. If the total displacement of the ball is 40.2 m at 29.5° above the x positive axis, with what speed did the striker kick the ball?
1
Expert's answer
2019-09-27T09:33:59-0400

Displacement components.


The vertical displacement is :


sin(29.50)=YTrTYT=rtsin(29.50)YT=40.2msin(29.50)=19.8msin(29.5^{0})=\frac{Y_{T}}{r_{T}}\\ Y_{T}=r_{t}sin(29.5^{0}) \\Y_{T}=40.2m*sin(29.5^{0})=19.8m


The horizontal displacement is

cos(29.50)=XTrTXT=rtcos(29.50)XT=40.2mcos(29.50)=35.0mcos(29.5^{0})=\frac{X_{T}}{r_{T}}\\ X_{T}=r_{t}cos(29.5^{0}) \\X_{T}=40.2m*cos(29.5^{0})=35.0m


The horizontal displacement of the first 2.50 seconds is:


X1=VoxtX1=14ms2.5s=35.0mX_{1}=V_{ox}*t\\ X_{1}=14\frac{m}{s}*2.5s=35.0m


The displacement in the other 0.900s is

X2=XTX1X2=40.2m35.0m=5.2mX_{2}=X_{T}-X_{1}\\X_{2}=40.2m-35.0m=5.2m


The horizontal velocity printed by the striker is


Vx=X2tVx=5.2m0.900s=5.78msV_{x}=\frac{X_{2}}{t}\\V_{x}=\frac{5.2m}{0.900s}=5.78\frac{m}{s}


The horizontal movement is independent of the vertical movement.


The vertical position is given by:


Y=Yo+Voyt+12ayt2Y=Y_{o}+V_{oy}*t+\frac{1}{2}*a_{y}*t^{2}


Where

  • Initial position Yo=0mY_{o}=0m
  • Final position Y=19.8mY=19.8m
  • Vertical acceleration aay=9.8ms2a_{y}=-9.8\frac{m}{s^{2}}
  • The vertical velocity Vy=??V_{y}=??
  • Time. t=0.900st=0.900s


Expression of the vertical velocity


Y=Voyt+12ayt2Voy=Y12ayt2tY=V_{oy}*t+\frac{1}{2}*a_{y}*t^{2}\\V_{oy}=\frac{Y-\frac{1}{2}*a_{y}*t^{2}}{t} \\


Numerically evaluating


Voy=19.8m129.8ms2(0.900s)20.900s=17.6msV_{oy}=\frac{19.8m-\frac{1}{2}*-9.8\frac{m}{s^{2}}*(0.900s)^{2}}{0.900s}=17.6\frac{m}{s}


The vertical velocity given by the striker is Voy=17.6msV_{oy}=17.6\frac{m}{s}


The magnitude of the velocity given by the striker is:


V2=Vox2+Voy2V=(5.78ms)2+(17.6ms)2V=18.5msV^{2}=V_{ox}^{2}+V_{oy}^{2}\\ V=\sqrt{(5.78\frac{m}{s})^{2}+(17.6\frac{m}{s})^{2}}\\ V=18.5\frac{m}{s}


Finally


V=18.5ms\boxed{V=18.5\frac{m}{s}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS