Displacement components.
The vertical displacement is :
s i n ( 29. 5 0 ) = Y T r T Y T = r t s i n ( 29. 5 0 ) Y T = 40.2 m ∗ s i n ( 29. 5 0 ) = 19.8 m sin(29.5^{0})=\frac{Y_{T}}{r_{T}}\\ Y_{T}=r_{t}sin(29.5^{0}) \\Y_{T}=40.2m*sin(29.5^{0})=19.8m s in ( 29. 5 0 ) = r T Y T Y T = r t s in ( 29. 5 0 ) Y T = 40.2 m ∗ s in ( 29. 5 0 ) = 19.8 m
The horizontal displacement is
c o s ( 29. 5 0 ) = X T r T X T = r t c o s ( 29. 5 0 ) X T = 40.2 m ∗ c o s ( 29. 5 0 ) = 35.0 m cos(29.5^{0})=\frac{X_{T}}{r_{T}}\\ X_{T}=r_{t}cos(29.5^{0}) \\X_{T}=40.2m*cos(29.5^{0})=35.0m cos ( 29. 5 0 ) = r T X T X T = r t cos ( 29. 5 0 ) X T = 40.2 m ∗ cos ( 29. 5 0 ) = 35.0 m
The horizontal displacement of the first 2.50 seconds is:
X 1 = V o x ∗ t X 1 = 14 m s ∗ 2.5 s = 35.0 m X_{1}=V_{ox}*t\\ X_{1}=14\frac{m}{s}*2.5s=35.0m X 1 = V o x ∗ t X 1 = 14 s m ∗ 2.5 s = 35.0 m
The displacement in the other 0.900s is
X 2 = X T − X 1 X 2 = 40.2 m − 35.0 m = 5.2 m X_{2}=X_{T}-X_{1}\\X_{2}=40.2m-35.0m=5.2m X 2 = X T − X 1 X 2 = 40.2 m − 35.0 m = 5.2 m
The horizontal velocity printed by the striker is
V x = X 2 t V x = 5.2 m 0.900 s = 5.78 m s V_{x}=\frac{X_{2}}{t}\\V_{x}=\frac{5.2m}{0.900s}=5.78\frac{m}{s} V x = t X 2 V x = 0.900 s 5.2 m = 5.78 s m
The horizontal movement is independent of the vertical movement.
The vertical position is given by:
Y = Y o + V o y ∗ t + 1 2 ∗ a y ∗ t 2 Y=Y_{o}+V_{oy}*t+\frac{1}{2}*a_{y}*t^{2} Y = Y o + V oy ∗ t + 2 1 ∗ a y ∗ t 2
Where
Initial position Y o = 0 m Y_{o}=0m Y o = 0 m Final position Y = 19.8 m Y=19.8m Y = 19.8 m Vertical acceleration aa y = − 9.8 m s 2 a_{y}=-9.8\frac{m}{s^{2}} a y = − 9.8 s 2 m The vertical velocity V y = ? ? V_{y}=?? V y = ?? Time. t = 0.900 s t=0.900s t = 0.900 s
Expression of the vertical velocity
Y = V o y ∗ t + 1 2 ∗ a y ∗ t 2 V o y = Y − 1 2 ∗ a y ∗ t 2 t Y=V_{oy}*t+\frac{1}{2}*a_{y}*t^{2}\\V_{oy}=\frac{Y-\frac{1}{2}*a_{y}*t^{2}}{t} \\ Y = V oy ∗ t + 2 1 ∗ a y ∗ t 2 V oy = t Y − 2 1 ∗ a y ∗ t 2
Numerically evaluating
V o y = 19.8 m − 1 2 ∗ − 9.8 m s 2 ∗ ( 0.900 s ) 2 0.900 s = 17.6 m s V_{oy}=\frac{19.8m-\frac{1}{2}*-9.8\frac{m}{s^{2}}*(0.900s)^{2}}{0.900s}=17.6\frac{m}{s} V oy = 0.900 s 19.8 m − 2 1 ∗− 9.8 s 2 m ∗ ( 0.900 s ) 2 = 17.6 s m
The vertical velocity given by the striker is V o y = 17.6 m s V_{oy}=17.6\frac{m}{s} V oy = 17.6 s m
The magnitude of the velocity given by the striker is:
V 2 = V o x 2 + V o y 2 V = ( 5.78 m s ) 2 + ( 17.6 m s ) 2 V = 18.5 m s V^{2}=V_{ox}^{2}+V_{oy}^{2}\\ V=\sqrt{(5.78\frac{m}{s})^{2}+(17.6\frac{m}{s})^{2}}\\ V=18.5\frac{m}{s} V 2 = V o x 2 + V oy 2 V = ( 5.78 s m ) 2 + ( 17.6 s m ) 2 V = 18.5 s m
Finally
V = 18.5 m s \boxed{V=18.5\frac{m}{s}} V = 18.5 s m
Comments