Displacement components.
The vertical displacement is :
"sin(29.5^{0})=\\frac{Y_{T}}{r_{T}}\\\\ Y_{T}=r_{t}sin(29.5^{0}) \\\\Y_{T}=40.2m*sin(29.5^{0})=19.8m"
The horizontal displacement is
"cos(29.5^{0})=\\frac{X_{T}}{r_{T}}\\\\ X_{T}=r_{t}cos(29.5^{0}) \\\\X_{T}=40.2m*cos(29.5^{0})=35.0m"
The horizontal displacement of the first 2.50 seconds is:
"X_{1}=V_{ox}*t\\\\ X_{1}=14\\frac{m}{s}*2.5s=35.0m"
The displacement in the other 0.900s is
"X_{2}=X_{T}-X_{1}\\\\X_{2}=40.2m-35.0m=5.2m"
The horizontal velocity printed by the striker is
"V_{x}=\\frac{X_{2}}{t}\\\\V_{x}=\\frac{5.2m}{0.900s}=5.78\\frac{m}{s}"
The horizontal movement is independent of the vertical movement.
The vertical position is given by:
"Y=Y_{o}+V_{oy}*t+\\frac{1}{2}*a_{y}*t^{2}"
Where
Expression of the vertical velocity
"Y=V_{oy}*t+\\frac{1}{2}*a_{y}*t^{2}\\\\V_{oy}=\\frac{Y-\\frac{1}{2}*a_{y}*t^{2}}{t} \\\\"
Numerically evaluating
"V_{oy}=\\frac{19.8m-\\frac{1}{2}*-9.8\\frac{m}{s^{2}}*(0.900s)^{2}}{0.900s}=17.6\\frac{m}{s}"
The vertical velocity given by the striker is "V_{oy}=17.6\\frac{m}{s}"
The magnitude of the velocity given by the striker is:
"V^{2}=V_{ox}^{2}+V_{oy}^{2}\\\\ V=\\sqrt{(5.78\\frac{m}{s})^{2}+(17.6\\frac{m}{s})^{2}}\\\\ V=18.5\\frac{m}{s}"
Finally
"\\boxed{V=18.5\\frac{m}{s}}"
Comments
Leave a comment