Question #95008
A particle is moving in x-y plane. It's initial velocity & acceleration are u=(4î+5ĵ) m/s and a=(2î-4ĵ) m/s^2. Find
(1) the time when the particle will cross the x axis
(2) x coordinate of the particle at that instant
(3) velocity of the particle at this instant
Initial coordinates of particle are (4m,10m)
1
Expert's answer
2019-09-23T09:19:19-0400

Question (a)

The cutting of the X axis occurs when the Y coordinate is equal to zero.


The vertical position is given by:Y=Yo+Voyt+12ayt2Y=Y_{o}+V_{oy}*t+\frac{1}{2}a_{y}t^{2}


Where:

  • Initial position. Yo=10mY_{o}=10m
  • Initial velocity Voy=+5msV_{oy}=+5\frac{m}{s}
  • Vertical acceleration. aay=4ms2a_{y}=-4\frac{m}{s^{2}}

Evaluating at Y = 0.


0=10+5t124t22t2+5t+10=00=10+5t-\frac{1}{2}4t^{2}\\ -2t^{2}+5t+10=0


A second grade equation.2t2+5t+10=0>ax2+bx+c=0-2t^{2}+5t+10=0->ax^{2}+bx+c=0


Coefficients a=2;b=5;c=10a=-2;b=5;c=10


Solving the second degree equation.


t=b±b24ac2at=(5)±(5)2421022t=5±10.24t=\frac{-b\pm \sqrt{b^{2}-4*a*c}}{2*a} \\t=\frac{-(5)\pm \sqrt{(5)^{2}-4*-2*10}}{2*-2}\\ t=\frac{-5 \pm 10.2}{-4}


Solution 1

t=5+10.24t=1.25st=\frac{-5 + 10.2}{-4} \\t=-1.25s


Solution 2

t=5104t=3.75st=\frac{-5 - 10}{-4} \\t=3.75s


the time when the particle will cross the x axis 

t=3.75s\boxed{t=3.75s}


Question (b)


The position of the particle is given by:


r(t)=ro+Vot+12at2\vec{r(t)}=\vec{r}_{o}+\vec{V_{o}}*t+\frac{1}{2}\vec{a}t^{2}


Where:

  • initial velocity V0=(4i+5j)ms\vec{V_{0}}=(4i+5j)\frac{m}{s}
  • The acceleration is a=(2i4j)ms2\vec{a}=(2i-4j)\frac{m}{s^{2}}
  • Initial position r0=(4i+10j)m\vec{r_{0}}=(4i+10j)m
  • time t=3.75st=3.75s


Numerically evaluating


r(t)=(4i+10j)m+(4i+5j)ms3.75s+12(2i4j)ms2(3.75s)2\vec{r(t)}=(4i+10j)m+(4i+5j)\frac{m}{s}*3.75s+\frac{1}{2}*(2i-4j)\frac{m}{s^{2}}*(3.75s)^{2}

ro=(4i+10j)m+(15i+18j)m+(14i28j)m\vec{r_{o}}=(4i+10j)m+(15i+18j)m+(14i-28j)m

ro=(33i+0j)m\vec{r_{o}}=(33i+0j)m


The position at that moment is:

ro=(33i+0j)m or ro=(33m,0m)\boxed{\vec{r_{o}}=(33i+0j)m \text{ or } \vec{r_{o}}=(33m,0m)}


Question (c)


The velocity of the particle is given by:


V(t)=Vo+at\vec{V(t)}=\vec{V_{o}}+\vec{a}*t


Where:

  • The initial velocityV0=(4i+5j)ms\vec{V_{0}}=(4i+5j)\frac{m}{s}
  • Acceleration a=(2i4j)ms2\vec{a}=(2i-4j)\frac{m}{s^{2}}
  • Time t=3.75s


Numerically evaluating


V(t)=(4i+5j)ms+(2i4j)ms23.75sV(t)=(4i+5j)ms+(5.5i15j)msV(t)=(11.5i10j)ms\vec{V(t)}=(4i+5j)\frac{m}{s} +(2i-4j)\frac{m}{s^{2}}*3.75s \\\vec{V(t)}=(4i+5j)\frac{m}{s}+(5.5i-15j)\frac{m}{s}\\\vec{V(t)}=(11.5i-10j)\frac{m}{s}


The velocity at that moment is

vecV(t)=(11.5i10j)ms\boxed{vec{V(t)}=(11.5i-10j)\frac{m}{s} }



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS