Question (a)
The cutting of the X axis occurs when the Y coordinate is equal to zero.
The vertical position is given by:"Y=Y_{o}+V_{oy}*t+\\frac{1}{2}a_{y}t^{2}"
Where:
Evaluating at Y = 0.
"0=10+5t-\\frac{1}{2}4t^{2}\\\\ -2t^{2}+5t+10=0"
A second grade equation."-2t^{2}+5t+10=0->ax^{2}+bx+c=0"
Coefficients "a=-2;b=5;c=10"
Solving the second degree equation.
"t=\\frac{-b\\pm \\sqrt{b^{2}-4*a*c}}{2*a} \\\\t=\\frac{-(5)\\pm \\sqrt{(5)^{2}-4*-2*10}}{2*-2}\\\\ t=\\frac{-5 \\pm 10.2}{-4}"
Solution 1
"t=\\frac{-5 + 10.2}{-4} \\\\t=-1.25s"
Solution 2
"t=\\frac{-5 - 10}{-4} \\\\t=3.75s"
the time when the particle will cross the x axis
"\\boxed{t=3.75s}"
Question (b)
The position of the particle is given by:
"\\vec{r(t)}=\\vec{r}_{o}+\\vec{V_{o}}*t+\\frac{1}{2}\\vec{a}t^{2}"
Where:
Numerically evaluating
"\\vec{r(t)}=(4i+10j)m+(4i+5j)\\frac{m}{s}*3.75s+\\frac{1}{2}*(2i-4j)\\frac{m}{s^{2}}*(3.75s)^{2}"
"\\vec{r_{o}}=(4i+10j)m+(15i+18j)m+(14i-28j)m"
"\\vec{r_{o}}=(33i+0j)m"
The position at that moment is:
"\\boxed{\\vec{r_{o}}=(33i+0j)m \\text{ or } \\vec{r_{o}}=(33m,0m)}"
Question (c)
The velocity of the particle is given by:
"\\vec{V(t)}=\\vec{V_{o}}+\\vec{a}*t"
Where:
Numerically evaluating
"\\vec{V(t)}=(4i+5j)\\frac{m}{s} +(2i-4j)\\frac{m}{s^{2}}*3.75s \\\\\\vec{V(t)}=(4i+5j)\\frac{m}{s}+(5.5i-15j)\\frac{m}{s}\\\\\\vec{V(t)}=(11.5i-10j)\\frac{m}{s}"
The velocity at that moment is
"\\boxed{vec{V(t)}=(11.5i-10j)\\frac{m}{s} }"
Comments
Leave a comment