A particle of mass 'm' moves in x-y plane so that its position vector r = xi + yj with a parametric equation x= a cos wt, y= b sin wt, where a&b are constants, a>b and w is a positive constant. 1. Show that the force field is conservative. 2. Find the potential energy at point a&b. 3. Find the work done by the force in moving the particle from point a-b. 4. Find the total energy of the particle.
Given,
Mass of the particle = m
Position vector of the particle "(r) = x\\hat{i} + y\\hat{j}"
"x=a\\cos(\\omega t)"
"y=b\\sin(\\omega t)"
"a>b" and "\\omega>0"
Now, we can write the position vector as,
"\\overrightarrow{r}=a\\cos(\\omega t)\\hat{i}+b\\sin (\\omega t)\\hat{j}"
Now, "\\overrightarrow{v}=\\frac{dr}{dt}=-a\\omega \\sin(\\omega t)\\hat{i}+b\\omega\\cos(\\omega t)\\hat{j}"
Acceleration of the particle, "(\\overrightarrow{a}) = \\frac{dv}{dt}"
"\\overrightarrow{a}=-a\\omega^2 \\cos(\\omega)\\hat{i}-b\\omega^2\\sin(\\omega t)\\hat{j}"
i) "F= m\\overrightarrow{a}"
"F=-m\\omega^2(acos(\\omega t)\\hat{i}+b\\sin(\\omega t)\\hat{j})"
"=-m\\omega^2(\\overrightarrow{r})"
So, the force is depending on the angle.
ii) Velocity will be maximum for the case a, when "\\omega t=0"
In that case "V=a"
Velocity will be maximum, when "\\omega t = \\pi\/2"
"V=b"
Hence, the required potential energy "PE = \\frac{1}{2}ma^2\\omega^2" and "PE=\\frac{1}{2}mb^2\\omega^2"
iii)
Comments
Well done
Leave a comment