Question #203635

A particle of mass 'm' moves in x-y plane so that its position vector r = xi + yj with a parametric equation x= a cos wt, y= b sin wt, where a&b are constants, a>b and w is a positive constant. 1. Show that the force field is conservative. 2. Find the potential energy at point a&b. 3. Find the work done by the force in moving the particle from point a-b. 4. Find the total energy of the particle.


1
Expert's answer
2021-06-08T09:34:57-0400

Given,

Mass of the particle = m

Position vector of the particle (r)=xi^+yj^(r) = x\hat{i} + y\hat{j}

x=acos(ωt)x=a\cos(\omega t)

y=bsin(ωt)y=b\sin(\omega t)

a>ba>b and ω>0\omega>0

Now, we can write the position vector as,

r=acos(ωt)i^+bsin(ωt)j^\overrightarrow{r}=a\cos(\omega t)\hat{i}+b\sin (\omega t)\hat{j}

Now, v=drdt=aωsin(ωt)i^+bωcos(ωt)j^\overrightarrow{v}=\frac{dr}{dt}=-a\omega \sin(\omega t)\hat{i}+b\omega\cos(\omega t)\hat{j}

Acceleration of the particle, (a)=dvdt(\overrightarrow{a}) = \frac{dv}{dt}

a=aω2cos(ω)i^bω2sin(ωt)j^\overrightarrow{a}=-a\omega^2 \cos(\omega)\hat{i}-b\omega^2\sin(\omega t)\hat{j}

i) F=maF= m\overrightarrow{a}

F=mω2(acos(ωt)i^+bsin(ωt)j^)F=-m\omega^2(acos(\omega t)\hat{i}+b\sin(\omega t)\hat{j})

=mω2(r)=-m\omega^2(\overrightarrow{r})

So, the force is depending on the angle.

ii) Velocity will be maximum for the case a, when ωt=0\omega t=0

In that case V=aV=a

Velocity will be maximum, when ωt=π/2\omega t = \pi/2

V=bV=b

Hence, the required potential energy PE=12ma2ω2PE = \frac{1}{2}ma^2\omega^2 and PE=12mb2ω2PE=\frac{1}{2}mb^2\omega^2

iii)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Keith urban
02.04.23, 13:11

Well done

LATEST TUTORIALS
APPROVED BY CLIENTS