We know that,
Force (F)=ηAdVdx(F)=\eta A\frac{dV}{dx}(F)=ηAdxdV
Dimensional formula of force (F)=[MLT−2](F)=[MLT^{-2}](F)=[MLT−2]
Dimensional formula of area of contact (A)=[L2](A) = [L^2](A)=[L2]
dV=[LT−1]dV=[LT^{-1}]dV=[LT−1]
dt=[T]dt= [T]dt=[T]
Now, substituting the values,
[MLT−2]=η[L2][LT−1][T−1][MLT^{-2}]=\eta [L^2][LT^{-1}][T^{-1}][MLT−2]=η[L2][LT−1][T−1]
⇒[MLT−2]=η[L3T−2]\Rightarrow [MLT^{-2}]=\eta [L^3 T^{-2}]⇒[MLT−2]=η[L3T−2]
⇒η=[MLT−2][L3T−2]\Rightarrow \eta = \frac{[MLT^{-2}]}{ [L^3 T^{-2}]}⇒η=[L3T−2][MLT−2]
⇒η=[ML−2]\Rightarrow \eta = [ML^{-2}]⇒η=[ML−2]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment