Consider the 2-dimensional phase space R^2. Find the most general canonical transformation of this phase space,of the form Q=Q(q,p)=f(q)+g(p)
P=P(q,p)=c[f(q)+h(p)] where f,g and h are differentiable real-valued functions
Given equations are,
Q=Q(q,p)=f(q)+g(p)Q=Q(q,p)=f(q)+g(p)Q=Q(q,p)=f(q)+g(p)
P=P(q,p)=c[f(q)+h(p)]P=P(q,p)=c[f(q)+h(p)]P=P(q,p)=c[f(q)+h(p)]
Q˙=Q(p)dQ(q)dq+Q(q)dQ(p)dq\dot{Q}=Q(p)\frac{dQ(q)}{dq}+Q(q)\frac{dQ(p)}{dq}Q˙=Q(p)dqdQ(q)+Q(q)dqdQ(p)
=f′(q)+g′(p)=f'(q)+g'(p)=f′(q)+g′(p)
P˙=P(p)d(P(p))dp+P(q)dP(q)dp\dot{P}=P(p)\frac{d(P(p))}{dp}+P(q)\frac{dP(q)}{dp}P˙=P(p)dpd(P(p))+P(q)dpdP(q)
=c[f′(q)+h′(p)]=c[f'(q)+h'(p)]=c[f′(q)+h′(p)]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments