A 8.75- g bullet from a 9-mm pistol has a velocity of 397.0 m/s. It strikes the 0.705- kg block of a ballistic pendulum and passes completely through the block. If the block rises through a distance h = 21.83 cm, what was the velocity of the bullet as it emerged from the block?
"\\text{System energy before bullet impact:}"
"E_1 =\\frac{mV_1^2}{2}+Mgh_1;"
"\\text{System energy after bullet impact:}"
"E_2 =\\frac{mV_2^2}{2}+Mgh_2;"
"\\text{where:}"
"m=8.75*10^{-3}kg-\\text{bullet mass}"
"M=0.705 \\ kg\\text{ballistic pendulum mass}"
"V_1,V_2\\text{ bullet velocity before and after impact}"
"h_1,h_2 \\text{ ballistic pendulum height above ground }h_2-h_1=0.2183\\ m"
"E_1=E_2"
"\\frac{mV_1^2}{2}+Mgh_1=\\frac{mV_2^2}{2}+Mgh_2"
"\\frac{mV_1^2}{2}-\\frac{mV_2^2}{2}=Mgh_2-Mgh_1"
"\\frac{mV_2^2}{2}=\\frac{mV_1^2}{2}-Mg(h_2-h_1)"
"\\frac{mV_2^2}{2}="
"V_2=\\sqrt{(V_1^2-\\frac{2Mg(h_2-h_1)}{m})}\\approx396.56"
Answer:396.56m/s
Comments
Leave a comment