Question #175374

A 500-kg satellite is in a circular orbit at an altitude of 500 km above the Earth’s surface. Because of air friction, the satellite eventually falls to the Earth’s surface, where it hits the ground with a speed of 2.00 km/s. How much energy was transformed into internal energy by means of air friction?




1
Expert's answer
2021-03-28T18:07:49-0400

LetM=61024kg Earth mass\text{Let}\newline M=6*10^{24}kg\text{ Earth mass}

R=6.4107m radius of the EarthR = 6.4*10^7 m \text{ radius of the Earth}

G=6.71011 gravitational constantG= 6.7*10^{-11}\text{ gravitational constant}

h=0.5107m altitude of satellite h = 0.5*10^7 m \text{ altitude of satellite }

m=5102 kg satellite massm= 5*10^2\ kg\text{ satellite mass}

V satellite speed in orbit V\text{ satellite speed in orbit }

V1=2103m/s satellite landing speedV_1=2*10^3m/s\text{ satellite landing speed}

in orbit:\text{in orbit:}

F=maF=ma

F=GmM(R+h)2F= G\frac{mM}{(R+h)^2}

ma=GmM(R+h)2ma= G\frac{mM}{(R+h)^2}

a=GM(R+h)2a= G\frac{M}{(R+h)^2}

a=V2(R+h)a=\frac{V^2}{(R+h)}

V2=GM(R+h)V^2= G\frac{M}{(R+h)}

Ek=mV22=GmM2(R+h)E_k=\frac{mV^2}{2}=G\frac{mM}{2*(R+h)}

Ep=GmMR+hE_p=-G\frac{mM}{R+h}

E=Ek+Ep=GmM2(R+h)=0.291010E=E_k+E_p=-G\frac{mM}{2(R+h)}=-0.29*10^{10}

upon landing:\text{upon landing:}

El=Ep1+Ek1E_l=E_{p1}+E_{k1}

El=GmMR+mV122=0.301010E_l=-G\frac{mM}{R}+\frac{mV_1^2}{2}=-0.30*10^{10}

Q=EEl=0.11010Q= E-E_l=0.1*10^{10}

Answer:0.11010Jtransformed into internal energy by means of air friction0.1*10^{10}J -\text{transformed into internal energy by means of air friction}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS