A 500-kg satellite is in a circular orbit at an altitude of 500 km above the Earth’s surface. Because of air friction, the satellite eventually falls to the Earth’s surface, where it hits the ground with a speed of 2.00 km/s. How much energy was transformed into internal energy by means of air friction?
"\\text{Let}\\newline\nM=6*10^{24}kg\\text{ Earth mass}"
"R = 6.4*10^7 m \\text{ radius of the Earth}"
"G= 6.7*10^{-11}\\text{ gravitational constant}"
"h = 0.5*10^7 m \\text{ altitude of satellite }"
"m= 5*10^2\\ kg\\text{ satellite mass}"
"V\\text{ satellite speed in orbit }"
"V_1=2*10^3m\/s\\text{ satellite landing speed}"
"\\text{in orbit:}"
"F=ma"
"F= G\\frac{mM}{(R+h)^2}"
"ma= G\\frac{mM}{(R+h)^2}"
"a= G\\frac{M}{(R+h)^2}"
"a=\\frac{V^2}{(R+h)}"
"V^2= G\\frac{M}{(R+h)}"
"E_k=\\frac{mV^2}{2}=G\\frac{mM}{2*(R+h)}"
"E_p=-G\\frac{mM}{R+h}"
"E=E_k+E_p=-G\\frac{mM}{2(R+h)}=-0.29*10^{10}"
"\\text{upon landing:}"
"E_l=E_{p1}+E_{k1}"
"E_l=-G\\frac{mM}{R}+\\frac{mV_1^2}{2}=-0.30*10^{10}"
"Q= E-E_l=0.1*10^{10}"
Answer:"0.1*10^{10}J -\\text{transformed into internal energy by means of air friction}"
Comments
Leave a comment