Find the velocity V, the period T, of a conical pendulum of mass M attached to a string of length L making angle teta with vertical
Given,
Velocity of the pendulum =v
Period of oscillation =T
Mass of the conical pendulum = M
Length of the string = L
Angle with the vertical direction "=(\\theta)"
Let tension in the string be F,
Now, applying the force balance equation,
"F\\sin\\theta = \\frac{mv^2}{r} ...(i)"
"F\\cos\\theta = mg...(ii)"
From equation (i) and (ii)
"\\Rightarrow \\frac{F\\sin\\theta}{F\\cos\\theta }=\\frac{v^2}{rg}"
"\\Rightarrow \\tan\\theta=\\frac{v^2}{rg}"
"\\Rightarrow v^2=rg\\tan\\theta"
"\\Rightarrow v=\\sqrt{rg\\tan \\theta}"
Hence, the velocity of the conical pendulum will be "\\sqrt{rg\\tan\\theta}" .
Comments
Leave a comment