Question #159925
A 200kg object and a 500kg object are separated by 4.00m Find
(a)the net gravitational force exerted by these objects on a 50.0 kg object placed midway between them.
(b) At position (other than an infinitely remote one) can the 50.0kg object be placed so as to experience a net force of zero from the other two objects?
1
Expert's answer
2021-02-19T18:59:33-0500

(a) Let’s calculate the resultant gravitational force on a mass m=50 kgm=50\ kg. According to the Newton’s law of universal gravitation, the mass m1=200 kgm_1=200\ kg attracts the mass mm with a gravitational force F1F_1. The object m2=500 kgm_2=500\ kg attracts the mass mm with a gravitational force F2F_2. Then, the sum of these two forces, taken algebraically (because they are along the same line) will be the net gravitational force FnetF_{net}:


Fnet=F1+F2,F_{net}=F_1+F_2,Fnet=Gm1mr2+Gm2mr2,F_{net}=-G\dfrac{m_1m}{r^2}+G\dfrac{m_2m}{r^2},Fnet=Gmr2(m2m1),F_{net}=\dfrac{Gm}{r^2}(m_2-m_1),Fnet=6.671011 Nm2kg250 kg(2 m)2(500 kg200 kg)=2.5107 N.F_{net}=\dfrac{6.67\cdot10^{-11}\ \dfrac{Nm^2}{kg^2}\cdot50\ kg}{(2\ m)^2}\cdot(500\ kg-200\ kg)=2.5\cdot10^{-7}\ N.

(b) At a point between the two objects at a distance dd from the 500 kg500\ kg object, the net force on the 50 kg50\ kg object will be zero when F1=F2F_1=F_2:


Gm1m(rd)2=Gm2md2,G\dfrac{m_1m}{(r-d)^2}=G\dfrac{m_2m}{d^2},m1(rd)2=m2d2,\dfrac{m_1}{(r-d)^2}=\dfrac{m_2}{d^2},drd=m2m1,\dfrac{d}{r-d}=\sqrt{\dfrac{m_2}{m_1}},d=rm2m11+m2m1,d=\dfrac{r\sqrt{\dfrac{m_2}{m_1}}}{1+\sqrt{\dfrac{m_2}{m_1}}},d=4 m500 kg200 kg1+500 kg200 kg=2.45 m.d=\dfrac{4\ m\cdot\sqrt{\dfrac{500\ kg}{200\ kg}}}{1+\sqrt{\dfrac{500\ kg}{200\ kg}}}=2.45\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS